BACKGROUND Bartonella spp. are neglected fastidious Gram-negative bacilli. We isolated Bartonella henselae from 1.2% of 500 studied blood donors and demonstrated that the bacteria remain viable in red blood cell units after 35 days of experimental infection. Now, we aim to evaluate the possibility of B. henselae transmission by blood transfusion in a mouse model. STUDY DESIGN AND METHODS Eight BALB/c mice were intraperitoneal inoculated with a 30μLof suspension with 104 CFU/mL of B. henselae and a second group of eight mice were inoculated with saline solution and used as control. After 96 hours of inoculation, the animals were euthanized. We collected blood and tissue samples from skin, liver, and spleen. Thirty microliters of blood from four Bartonella-inoculated animals were transfused into a new group (n=4). Another group received blood from the control animals. B. henselae infection was investigated by conventional and nested polymerase chain reaction (PCR). RESULTS Blood samples from all 24 mice were negative by molecular tests though half of the tissue samples were positive by nested PCR in the intraperitoneal Bartonella-investigated animals. Tissues from two of the four mice that received blood transfusions from Bartonella-inoculated animals were also nested PCR positives. CONCLUSIONS Transmission of B. henselae by transfusion is possible in mice even when donor animals have undetectable bloodstream infection. The impact of human Bartonella sp. transmission through blood transfusion recipients must be evaluated.
BackgroundThe use of medicinal plants and their derivatives is increasing, and approximately one-third of all traditional herbal medicines are intended for wound treatment. Natural products used in these treatments include vegetable oils, which are rich in essential fatty acids. Once in contact with an ulcerative surface, the oil reaches the blood and lymphatic vessels, thus eliciting systemic effects.ObjectiveThis study evaluated the local and possible systemic effects of essential fatty acids (sunflower oil) applied topically to rat wounds.MethodsCutaneous punch wounds (6 mm) were produced on the dorsa of 30 rats. Saline (SS), mineral oil (MO) or essential fatty acid (EFA) solutions were applied topically. Healing was evaluated after 2, 4 and 10 days (n = 5 per group) by visual and histological/morphometric examination, second harmonic generation (SHG) microscopy, and cytokine and growth factor quantification in the scar tissue (real-time PCR) and in serum (ELISA).ResultsMO/EFA-treated animals had higher IGF-1, leptin, IL-6 and IFN-γ mRNA expression and lower serum IL-6 levels than the control (SS/MO) animals. SHG analysis showed no difference in collagen density between the animals treated with MO and EFA.ConclusionEFA treatment induces topical (observed by local IGF-1, leptin, IL-6 and IFN-γ production) and systemic effects, lowering IL-6 levels in the serum. As the oil is widely used to shorten ulcer healing time, studies are needed to evaluate the treatment safety and possible undesired effects.
We report a fatal case of Bartonella henselae bacteremic patient. He had negative serology and PCRs from whole blood and liquid culture; only ftsZ nested PCR was positive from the blood liquid culture. The isolate had positive PCRs. When considered, bartonellosis diagnosis can be still challenging because of technical limitations.
IntroductionWounds are a common health problem. Coffee is widely consumed and its oil contains essential fatty acids. We evaluated the local (skin) and systemic effects associated with the topical use of coffee oils in rats.MethodsPunch skin wounds (6 mm) incisions were generated on the backs of 75 rats. Saline (SS), mineral oil (MO), green coffee oil (GCO), roasted coffee oil (RCO), green coffee ground oil (GCGO) or roasted coffee ground oil (RCGO) were topically applied to the wounds. Healing was evaluated by visual and histological/morphometric optical microscopy examination; second harmonics generation (SHG) microscopy, wound tissue q-PCR (values in fold-change) and blood serum (ELISA, values in pg/mL).ResultsRCO treated animals presented faster wound healing (0.986 vs. 0.422), higher mRNA expression of IGF-1 (2.78 vs. 1.00, p = 0.01), IL-6 (10.72 vs. 1.00, p = 0.001) and IL-23 (4.10 vs. 1.2, p = 0.05) in early stages of wound healing; higher IL-12 (3.32 vs. 1.00, p = 0.05) in the later stages; and lower serum levels of IFN-γ (11.97 vs. 196.45, p = 0.01). GCO treatment led to higher mRNA expression of IL-6 (day 2: 7.94 vs. 1.00, p = 0.001 and day 4: 6.90 vs. 1.00, p = 0.01) and IL-23 (7.93 vs. 1.20, p = 0.001) in the early stages. The RCO treatment also produced higher serum IFN-α levels throughout the experiment (day 2: 52.53 vs. 21.20; day 4: 46.98 vs.21.56; day 10: 83.61 vs. 25.69, p = 0.05) and lower levels of IL-4 (day 4: 0.9 vs.13.36, p = 0.01), adiponectin (day 10: 8,367.47 vs. 16,526.38, p = 0.001) and IFN-γ (day 4: 43.03 vs.196.45, p = 0.05). The SHG analysis showed a higher collagen density in the RCO and GCO treatments (p = 0.05).ConclusionTopical treatment with coffee oils led to systemic actions and faster wound healing in rats. Further studies should be performed are necessary to assess the safety of topical vegetal oil use for skin lesions.
Bartonella henselae is a causative agent of anemia, cat scratch disease, bacillary angiomatosis, recurrent fever, hepatitis, endocarditis, chronic lymphadenopathy, joint and neurological disorders. B. henselae are intra-erythrocytic bacteria. The goal of this study was to visualize the B. henselae invasion into enucleated human red blood cells in real time using bacterium endogenous fluorescence. We took advantage of the unique fluorescence emission spectral profile of the bacteria. We used a linear unmixing approach to separate the fluorescence emission spectra of human erythrocytes from native B. henselae when excited at 488nm. Human blood samples were inoculated with B. henselae and incubated for 60 hours. 3-D live images were captured at select intervals using multi-photon laser scanning microscopy. Uninfected blood samples were also analyzed. This study revealed bacteria entering mature erythrocytes over a 60 hour time period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.