Fast and innovative methodology to monitors the addition of soybean oil in extra virgin olive oil was developed employing ESI-MS with ionization operating in positive mode. A certified extra virgin olive oil and refined soybean oil samples were analyzed by direct infusion, the identification of a natural lipid marker present only in soybean oil (m/z 886.68 [TAG+NH]) was possible. The certified extra virgin olive oil was purposely adulterated with soybean oil in different levels (1, 5, 10, 20, 50, 70, 90%) being possible to observe that the new methodology is able to detect even small fraud concentration, such as 1% (v/v). Additionally, commercial samples were analyzed and were observed the addition of soybean oil as a common fraud in this segment. This powerful analytical method proposed could be applied as routine analysis by control organization, as well as food industries, considering its pronounced advantages; simplicity, rapidity, elevated detectability and minor amounts of sample and solvent consumed.
Aspergillus flavus is a filamentous fungus found in nature and characterized by the production of bright and colourful colonies. It grows on different substrates, producing secondary metabolites and, if present in foodstuffs, can be a source of health problems for humans and animals, as well as causing economic losses. Traditional methods for fungal identification are based on morphological characteristics, requiring specialists and being very time-consuming. The development of analytical alternatives might have advantages such as greater efficiency, more reproducibility and be less time-consuming. Thus, a qualitative analytical method to detect Aspergillus flavus in food samples, based on the identification of fungal chemical markers by HPLC-MS, was developed. The method comprises methanol extraction followed by HPLC-MS analysis, and was able to identify 14 fungus secondary metabolites, namely aflatoxin B1, aflatoxin G1, aspergillic acid, aspyrone, betaine, chrysogine, deacetyl parasiticolide A, flufuran, gregatin B, hydroxysydonic acid, nicotinic acid, phomaligin A, spinulosin and terrein.
Omega-3 fish oil supplements are widely consumed as source of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, presenting beneficial effects on human health. This study aimed to evaluate fifteen brands of omega-3 fish oil supplements available in Brazilian market in order to estimate the Brazilian reality regarding those supplements. Twelve fatty acids were quantified by gas chromatography with a flame ionization detector (GC-FID), and lipid profile were obtained via mass spectrometry fingerprinting using direct electrospray ionization mass spectrometry (ESI-MS) to assess the form in which fatty acids are present as well as the possible fraud existence. Among all analyzed samples, thirteen brands were revealed as EPA and DHA sources (90.2-440.3 and 77.8-302.3 mg g -1 lipid, respectively) in triacylglycerols (TAG) or ethyl esters (EE) form. However, two brands were discovered with addition of large amounts of soybean oil, leading the final consumer to ingest this low-cost oil believing that they are consuming adequate doses of EPA and DHA.
Human milk is related to the physiological and nutritional welfare of newborns, providing the necessary dietary energy, physiologically active compounds and essential nutrients for breastfed babies. Human milk fat has an important position as energy source, structural and regulatory functions, being one of the most important components of breast milk. It provides approximately 50-60% of the energy of the human milk, and its composition in fatty acids defines its nutritional and physico-chemical properties. Furthermore, human milk contains the longchain polyunsaturated essential fatty acids (LCPUFA) eicosapentaenoic acid (EPA), arachidonic acid (AA) and docosahexaenoic acid (DHA), which is important for appropriate development of baby's organs, tissues and nervous system. This chapter will address the benefits associated with the consumption of human milk (health, nutritional, immunological and developmental benefits) as well as the analysis applied to determine the lipid quality of this powerful food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.