Doxorubicin is one of the leading drugs for osteosarcoma standard chemotherapy. A total of 40% to 45% of high-grade osteosarcoma patients are unresponsive, or only partially responsive, to doxorubicin (Dox), due to the overexpression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). The aim of this work is to improve Dox-based regimens in resistant osteosarcomas. We used a chemically modified mitochondria-targeted Dox (mtDox) against Pgp-overexpressing osteosarcomas with increased resistance to Dox. Unlike Dox, mtDox accumulated at significant levels intracellularly, exerted cytotoxic activity, and induced necrotic and immunogenic cell death in Dox-resistant/Pgp-overexpressing cells, fully reproducing the activities exerted by anthracyclines in drug-sensitive tumors. mtDox reduced tumor growth and cell proliferation, increased apoptosis, primed tumor cells for recognition by the host immune system, and was less cardiotoxic than Dox in preclinical models of drug-resistant osteosarcoma. The increase in Dox resistance was paralleled by a progressive upregulation of mitochondrial metabolism. By widely modulating the expression of mitochondria-related genes, mtDox decreased mitochondrial biogenesis, the import of proteins and metabolites within mitochondria, mitochondrial metabolism, and the synthesis of ATP. These events were paralleled by increased reactive oxygen species production, mitochondrial depolarization, and mitochondria-dependent apoptosis in resistant osteosarcoma cells, where Dox was completely ineffective. We propose mtDox as a new effective agent with a safer toxicity profile compared with Dox that may be effective for the treatment of Dox-resistant/Pgp-positive osteosarcoma patients, who strongly need alternative and innovative treatment strategies. Mol Cancer Ther; 15(11); 2640-52. ©2016 AACR.
OS is a heterogeneous tumor, with a great variability in treatment response between patients. It is therefore unlikely that a single therapeutic tool will be uniformly successful for all OS patients. This claims for the validation of new treatment approaches together with biologic/(pharmaco)genetic markers, which may select the most appropriate subgroup of patients for each treatment approach. Since some promising novel agents and treatment strategies are currently tested in Phase I/II/III clinical trials, we may hope that new therapies with superior efficacy and safety profiles will be identified in the next few years.
Doxorubicin is one of the most effective drugs for the first-line treatment of high-grade osteosarcoma. Several studies have demonstrated that the major cause for doxorubicin resistance in osteosarcoma is the increased expression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp).We recently identified a library of H 2 S-releasing doxorubicins (Sdox) that were more effective than doxorubicin against resistant osteosarcoma cells. Here we investigated the molecular mechanisms of the higher efficacy of Sdox in human osteosarcoma cells with increasing resistance to doxorubicin.Differently from doxorubicin, Sdox preferentially accumulated within the endoplasmic reticulum (ER), and its accumulation was only modestly reduced in Pgp-expressing osteosarcoma cells. The increase in doxorubicin resistance was paralleled by the progressive down-regulation of genes of ER-associated protein degradation/ER-quality control (ERAD/ERQC), two processes that remove misfolded proteins and protect cell from ER stress-triggered apoptosis. Sdox, that sulfhydrated ERassociated proteins and promoted their subsequent ubiquitination, up-regulated ERAD/ERQC genes. This up-regulation, however, was insufficient to protect cells, since Sdox activated ER stress-dependent apoptotic pathways, e.g. the C/EBP-β LIP/CHOP/PUMA/caspases 12-7-3 axis. Sdox also promoted the sulfhydration of Pgp, that was subsequently ubiquitinated: this process further enhanced Sdox retention and toxicity in resistant cells.Our work suggests that Sdox overcomes doxorubicin resistance in osteosarcoma cells by at least two mechanisms: it induces the degradation of Pgp following its sulfhydration and produces a huge misfolding of ER-associated proteins, triggering ERdependent apoptosis. Sdox may represent the prototype of innovative anthracyclines, effective against doxorubicinresistant/Pgp-expressing osteosarcoma cells by perturbing the ER functions.
This study aimed to identify associations between germline polymorphisms and risk of high-grade osteosarcoma (HGOS) development, event-free survival (EFS) and toxicity in HGOS patients treated with neo-adjuvant chemotherapy and surgery.Germline polymorphisms of 31 genes known to be relevant for transport or metabolism of all four drugs used in HGOS chemotherapy (methotrexate, doxorubicin, cisplatin and ifosfamide) were genotyped in 196 patients with HGOS and in 470 healthy age and gender-matched controls. Of these 196 HGOS patients, a homogeneously treated group of 126 patients was considered for survival analyses (survival cohort). For 57 of these, treatment-related toxicity data were available (toxicity cohort).Eleven polymorphisms were associated with increased risk of developing HGOS (p < 0.05). The distribution of polymorphisms in patients was characterized by a higher Shannon entropy. In the survival cohort (n = 126, median follow-up = 126 months), genotypes of ABCC2_1249A/G, GGH_452T/C, TP53_IVS2+38G/C and CYP2B6*6 were associated with EFS (p < 0.05). In the toxicity cohort (n = 57), genotypes of ABCB1_1236T/C, ABCC2_1249A/G, ABCC2_3972A/G, ERCC1_8092T/G, XPD_23591A/G, XRCC3_18067T/C, MTHFR_1298A/C and GGH_16T/C were associated with elevated risk for toxicity development (p < 0.05).The results obtained in this retrospective study indicate that the aforementioned germline polymorphisms significantly impact on the risk of HGOS development, EFS and the occurrence of chemotherapy-related toxicity. These findings should be prospectively validated with the aim of optimizing and tailoring HGOS treatment in the near future.
Doxorubicin (DOXO) is one of the most effective antineoplastic agents in clinical practice. Its use is limited by acute and chronic side effects, in particular by its cardiotoxicity and by the rapid development of resistance to it. As part of a program aimed at developing new DOXO derivatives endowed with reduced cardiotoxicity, and active against DOXO-resistant tumor cells, a series of H2S-releasing DOXOs (H2S-DOXOs) were obtained by combining DOXO with appropriate H2S donor substructures. The resulting compounds were studied on H9c2 cardiomyocytes and in DOXO-sensitive U-2OS osteosarcoma cells, as well as in related cell variants with increasing degrees of DOXO-resistance. Differently from DOXO, most of the products were not toxic at 5 μM concentration on H9c2 cells. A few of them triggered high activity on the cancer cells. H2S-DOXOs 10 and 11 emerged as the most interesting members of the series. The capacity of 10 to impair Pgp transporter is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.