The article develops the notion of covariational reasoning and proposes a framework for describing the mental actions involved in applying covariational reasoning when interpreting and representing dynamic function events. It also reports on an investigation of high-performing second semester calculus students' ability to reason about covarying quantities in dynamic situations. The study revealed that these students were able to construct images of a function's dependent variable changing in tandem with the imagined change of the independent variable, and in some situations, were able to construct images of rate of change for contiguous intervals of a function's domain. However, students appeared to have difficulty forming images of continuously changing rate and were unable to accurately represent and interpret increasing and decreasing rate for dynamic function situations.
This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting Multidimensional Problem-Solving Framework has four phases: orientation, planning, executing, and checking. Embedded in the framework are two cycles, each of which includes at least three of the four phases. The framework also characterizes various problem-solving attributes (resources, affect, heuristics, and monitoring) and describes their roles and significance during each of the problem-solving phases. The framework's sub-cycle of conjecture, test, and evaluate (accept/reject) became evident to us as we observed the mathematicians and listened to their running verbal descriptions of how they were imagining a solution, playing out that solution in their minds, and evaluating the validity of the imagined approach. The effectiveness of the mathematicians in making intelligent decisions that led down productive paths appeared to stem from their ability to draw on a large reservoir of well-connected knowledge, heuristics, and facts, as well as their ability to manage their emotional responses. The mathematicians' well-connected conceptual knowledge, in particular, appeared to be an essential attribute for effective decision making and execution throughout the problem-solving process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.