In addition to their catalytic functions, cytosolic glutathione S-transferases (GSTs) are a major reserve of high-capacity binding proteins for a large variety of physiological and exogenous non-substrate compounds. This ligandin function has implicated GSTs in numerous ligand-uptake, -transport and -storage processes. The binding of non-substrate ligands to GSTs can inhibit catalysis. In the present study, the energetics of the binding of the non-substrate ligand 8-anilino-1-naphthalene sulphonate (ANS) to wild-type human class Alpha GST with two type-1 subunits (hGSTA1-1) and its ∆Phe-222 deletion mutant were studied by isothermal titration calorimetry. The stoichiometry of binding to both proteins is one ANS molecule per GST subunit with a
In addition to their catalytic functions, cytosolic glutathioneS-transferases (GSTs) are a major reserve of high-capacity binding proteins for a large variety of physiological and exogenous non-substrate compounds. This ligandin function has implicated GSTs in numerous ligand-uptake, -transport and -storage processes. The binding of non-substrate ligands to GSTs can inhibit catalysis. In the present study, the energetics of the binding of the non-substrate ligand 8-anilino-1-naphthalene sulphonate (ANS) to wild-type human class Alpha GST with two type-1 subunits (hGSTA1-1) and its DeltaPhe-222 deletion mutant were studied by isothermal titration calorimetry. The stoichiometry of binding to both proteins is one ANS molecule per GST subunit with a greater affinity for the wild-type (K(d)=65 microM) than for the DeltaPhe-222 mutant (K(d)=105 microM). ANS binding to the wild-type protein is enthalpically driven and it is characterized by a large negative heat-capacity change, DeltaC(p). The negative DeltaC(p) value for ANS binding indicates a specific interface with a significant hydrophobic component in the protein-ligand complex. The negatively charged sulphonate group of the anionic ligand is apparently not a major determinant of its binding. Phe-222 contributes to the binding affinity for ANS and the hydrophobicity of the binding site.
A method is reported for the preparative isolation of the two forms of pro-(carboxypeptidase A) from pig pancreas: the monomer and the binary complex with pro-(proteinase E). This method, which is mainly based on chromatography on DEAE-Sepharose at pH 5.7, allows these proenzymes to be prepared more quickly and in safer conditions than with other reported methods. Undegraded and homogeneous carboxypeptidase A1 and A2 species (peptidyl-L-amino acid hydrolase, EC 3.4.17.1), in monomeric forms with high specific activity, are also obtained in high yield by controlled trypsin activation of either of the pro-(carboxypeptidases A) followed by chromatography on DEAE-Sepharose at pH 5.8 under dissociating conditions (7 M-urea).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.