We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharide templates. Interaction between iron (II) sulfate and template has been carried out in aqueous phase, followed by the selective and controlled removal of the template to achieve narrow distribution of particle size. Particles of iron oxide obtained have been characterized for their stability in solvent media, size, size distribution and crystallinity and found that when the negative value of the zeta potential increases, particle size decreases. A narrow particle size distribution with D 100 = 275 nm was obtained with chitosan and starch templates. SEM measurements further confirm the particle size measurement. Diffuse reflectance UV-vis spectra values show that the template is completely removed from the final iron oxide particles and powder XRD measurements show that the peaks of the diffractogram are in agreement with the theoretical data of hematite. The salient observations of our study shows that there occurs a direct correlation between zeta potential, polydispersity index, bandgap energy and particle size. The crystallite size of the particles was found to be 30-35 nm. A large negative zeta potential was found to be advantageous for achieving lower particle sizes, owing to the particles remaining discrete without agglomeration.
Easier, less time consuming, green processes, which yield silver nanoparticles of uniform size, shape and morphology are of interest. Various methods for synthesis, such as conventional temperature assisted process, controlled reaction at elevated temperatures, and microwave assisted process have been evaluated for the kind of silver nanoparticles synthesized. Starch has been employed as a template and reducing agent. Electron microscopy, photon correlation spectroscopy and surface plasmon resonance have been employed to characterize the silver nanoparticles synthesized. Compared to conventional methods, microwave assisted synthesis was faster and provided particles with an average particle size of 12 nm. Further, the starch functions as template, preventing the aggregation of silver nanoparticles.
A facile electrochemical sensor was developed by electrochemical deposition of PtIr nanoparticles on poly(3,4ethylenedioxythiophene) (PEDOT) modified carbon fiber paper electrode (CFP). The modified electrodes were characterized by Field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), RAMAN spectroscopy, Fourier transform infrared spectroscopy (FTIR) and electroanalytical techniques. PtIr-PEDOT modified CFP electrode was used successfully in the determination of an anti-hypertensive prodrug Olmesartan medoxomil (OM) at femtomolar (fM) level for the first time. Under optimal conditions, the prepared electrochemical sensor has shown broad linear range between 0.001 pM and 0.220 pM and superior detection limit of 3.42 fM was observed based on Differential pulse voltammetric (DPV) study. In addition, the designed electrochemical sensor was successfully demonstrated as a novel platform in the electrochemical determination of OM in human urine and pharmaceutical samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.