The Vegetation Prodrome of Italy was promoted in 2012 by the Italian "Ministry of Environment, Land and Sea Protection", in collaboration with the "Italian Society of Botany", to provide a comprehensive and systematic catalogue and description of Italian plant communities. The Prodrome that is presented in this paper is the first full organic synthesis of the vegetation of Italy at the alliance syntaxonomic level. It fulfils several needs, the main one being a unified and comprehensive national framework that may make an important contribution to the definition of the European Vegetation Prodrome. Syntaxonomy, as well as taxonomy, is sometimes based on considerations that may in part diverge: several authors tend to favour models that are divisive or aggregative to a greater or lesser extent in terms of flora, biogeography and ecology. These different points of view stimulate the scientific debate and allow the adoption of a framework that is more widely supported. The Prodrome includes 75 classes, 2 subclasses, 175 orders, 6 suborders and 393 alliances. The classes were grouped into nine broad categories according to structural, physiognomic and synecological elements rather than to syntaxonomic criteria. The rank, full valid name, any synonymies and incorrect names are provided for each syntaxon. The short declaration highlights the physiognomy, synecology, syndynamics and distribution of the plant communities that belong to the syntaxon. The Prodrome of the Italian Vegetation is linked to the European Strategy for Biodiversity, the European Habitats Directive and the European Working Groups related to the ecosystems and their services. In addition to basic applications, the Prodrome can be used as a framework for scientific research related to the investigation of the relationships between plant communities and the environmental factors that influence their composition and distribution
Invasive alien plants are a major threat to biodiversity and they contribute to the unfavourable conservation status of habitats of interest to the European Community. In order to favour implementation of European Union Regulation no. 1143/2014 on invasive alien species, the Italian Society of Vegetation Science carried out a large survey led by a task force of 49 contributors with expertise in vegetation across all the Italian administrative regions. The survey summed up the knowledge on impact mechanisms of invasive alien plants in Italy and their outcomes on plant communities and the EU habitats of Community Interest, in accordance with Directive no. 92/ 43/EEC. The survey covered 241 alien plant species reported as having deleterious ecological impacts. The data collected illustrate the current state of the art, highlight the main gaps in knowledge, and suggest topics to be further investigated. In particular, the survey underlined competition as being the main mechanism of ecological impact on plant communities and Natura 2000 habitats. Of the 241 species, only Ailanthus altissima was found to exert an ecological impact on plant communities and Natura 2000 habitats in all Italian regions; while a further 20 species impact up to ten out of the 20 Italian administrative regions. Our data indicate that 84 out of 132 Natura 2000 Habitats (64%) are subjected to some degree of impact by invasive alien plants. Freshwater habitats and natural and semi-natural grassland formations were impacted by the highest number of alien species, followed by coastal sand dunes and inland dunes, and forests. Although not exhaustive, this research is the first example of nationwide evaluation of the ecological impacts of invasive alien plants on plant communities and Natura 2000 Habitats.
Aims: Facilitation has been reported in a wide range of plant communities, with evidence of positive interactions between beneficiary and nurse plants shifting during their ontogenetic development. This study explored the hypothesis that shrubs of Juniperus communis subsp. nana (thereafter Juniperus) play a crucial role in the successional sequence of plant communities acting as nurse for different species, but only after reaching a certain size. In addition, we examined whether plant-plant interaction changes during ontogenesis of these shrubs in the presence of contrasting disturbance regimes in terms of substrate stability. Location: Sibillini National Park, central Italy. The vegetation is semi-natural dry grasslands (92/43/EEC Habitats Directive: Habitat 6210 -Festuco-Brometalia).Methods: Field measurements were carried out to assess the effects of Juniperus on (1) the distribution of co-existing vascular species, (2) the above-and belowground microclimate, and (3) changes in soil fertility and hydrology.Results: The capacity of Juniperus shrubs to facilitate heterospecific plants considerably increases during its ontogenetic development, i.e. small shrubs mainly compete for resources with local vegetation, whereas large shrubs act as nurse plants for herbaceous and especially for woody species. The facilitation effect was slight, albeit significantly higher in the disturbed area than in the more stable one. Juniperus was able to promote the formation of an island of fertility under its canopy by accumulating a considerable amount of organic matter, N, P, Ca 2+ , Mg 2+ and K + in a few decades. Juniperus shrubs improve soil hydrological properties and mitigate the daily range of soil temperature, reducing the exposure of co-existing plants to high temperatures and water loss through soil evaporation, particularly during the growing periods in spring and summer.Conclusions: This study demonstrates that biogenic amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, control the establishment and growth of co-existing plants during Juniperus shrub development.
Questions: Does the fairy ring fungus Agaricus campestris affects spatial distribution of co-existing plant species? Is ring development related to changes of soil physical, chemical, enzymatic and microbiological properties? What are the causes of weakening and subsequent luxuriance of vegetation during fairy ring dynamics in the soil? Location: Species-rich, mowed calcareous grassland, central Italy (43° 17′26″ N, 12° 51′29″ E). Methods: Fairy rings were monitored for total plant biomass, species richness and composition in four zones: external grassland (OUT), fungal front (FF), area with flourishing vegetation (BELT) and internal grassland (IN). In each zone, 17 soil parameter were analysed: physical and chemical properties (water-holding capacity, pH, electrical conductivity, organic C, Olsen P, total N, NH 4 +, NO 3 -, hydrophobicity and cyanide concentration), total enzyme activity (FDA) and microbiological features (community-level physiological profile using BIOLOG EcoPlates ™, microbial biomass, fungal mycelium, culturable actinomycetes, bacteria and fungi). A bioassay was performed to evaluate responses of three co-existing species (Bromus erectus, Cynosurus echinatus and Centaurea ambigua) growing on soil collected from different fairy ring zones. Results: Plant species composition dramatically changed in response to fairy ring development, with disappearance of most grassland species in the ring-affected area. Plant biomass and species richness were higher in OUT and IN areas, and lowest in FF. Profound changes in soil properties occurred after fungal passage, with consistent reductions of C and N content and increases of FDA and microbial physiological profiles. Soil from the FF zone had remarkable increases of mineral N forms, electrical conductivity and hydrophobicity, with no trace of cyanide. The bioassay showed species-specific responses to different soil types. Conclusions: This study provides evidence that the spread of fairy ring fungi, coupled with a reduction of perennial plant cover, creates empty niches for many short-lived species
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.