Nuclear spin order may be stored in a liquid for a much longer time than the longitudinal relaxation time T1, by using rf fields to isolate states of different symmetry. The method is demonstrated on a sample containing AX spin systems.
Low-field nuclear spin singlet states may be used to store nuclear spin order in a room temperature liquid for a time much longer than the spin-lattice relaxation time constant T1. The low-field nuclear spin singlets are unaffected by intramolecular dipole-dipole relaxation, which is generally the predominant relaxation mechanism. We demonstrate storage of nuclear spin order for more than 10 times longer than the measured value of T1. This phenomenon may facilitate the development of nuclear spin hyperpolarization methods and may allow the study of motional processes which occur too slowly for existing NMR techniques. This is the first time that the memory of nuclear spins has been extended well beyond the T1 limit in a system lacking intrinsic magnetic equivalence.
Abstract:The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report encapsulation of hydrogen fluoride inside C 60 using molecular surgery to give the endohedral fullerene HF@C 60 . The key synthetic step is the closure of the open fullerene cage while minimizing escape of HF. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large 1 H-19 F Jcoupling typical of an isolated species. The dipole moment of HF@C 60 was estimated from the temperature-dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.Molecular endofullerenes consist of fullerene cages encapsulating small molecules, which are free to rotate and translate inside the cage. 1 The dihydrogen and water endofullerenes H 2 @C 60 , H 2 O@C 60 , and their isotopologues, have been synthesized by the procedure known as 'molecular surgery', in which synthetic operations are used to open a hole in the fullerene allowing encapsulation of the guest, followed by a suturing technique to reform the pristine fullerene shell. [2][3][4] Recently the approach has been extended to C 70 and C 59 N. [5][6][7] The confined molecules display quantization of their coupled translational and rotational degrees of freedom, and exhibit phenomena such as nuclear spin isomerism and orthopara conversion. [8][9][10][11][12] Recently it was shown that nuclear spin conversion of the encapsulated water molecules in H 2 O@C 60 leads to a change in the dielectric constant of the material. 13 One system of great interest is HF@C 60 , in which each fullerene cage contains a single hydrogen fluoride (HF) molecule. This material offers the possibility to study the spectroscopic properties of nearisolated and freely rotating HF molecules under a wide range of conditions, free from the complications of dimerization and hydrogen bonding. Predictions of the properties of HF@C 60 have been made using classical, 14 semiempirical 15,16 and quantum chemistry techniques. [17][18][19][20] Furthermore it has been postulated that endofullerenes containing freely rotating electric dipoles could exhibit ferroelectricity, due to cooperative alignment of the interacting electric dipole moments. 21 2The first examples of open-cage endofullerenes encapsulating a hydrogen fluoride molecule have recently appeared, including HF@1. 22,23 Herein we report the successful suturing of HF@1 to give the closed-cage species HF@C 60 . We present NMR, infrared, and neutron scattering data on HF@C 60 which show that the translational and rotational motions of the HF molecule inside the cage are quantized. Interactions with the cage modify the rotational and vibrational constants of the encapsula...
Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T 1 , which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet–triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of 15 N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T 1 is less than 3 min under the same conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.