Low-field nuclear spin singlet states may be used to store nuclear spin order in a room temperature liquid for a time much longer than the spin-lattice relaxation time constant T1. The low-field nuclear spin singlets are unaffected by intramolecular dipole-dipole relaxation, which is generally the predominant relaxation mechanism. We demonstrate storage of nuclear spin order for more than 10 times longer than the measured value of T1. This phenomenon may facilitate the development of nuclear spin hyperpolarization methods and may allow the study of motional processes which occur too slowly for existing NMR techniques. This is the first time that the memory of nuclear spins has been extended well beyond the T1 limit in a system lacking intrinsic magnetic equivalence.
We describe magic-angle-spinning NMR methods for the accurate determination of internuclear dipole-dipole couplings between homonuclear spins-(1/2) in the solid state. The new sequences use symmetry principles to treat the effect of magic-angle sample-rotation and resonant radio frequency fields. The pulse-sequence symmetries generate selection rules which reduce the interference of undesirable interactions and improve the robustness of the pulse sequences with respect to chemical shift anisotropies. We show that the pulse sequences may be used to estimate distances between 13C spins in organic solids, including bond lengths in systems with large chemical shift anisotropies, such as conjugated systems. For bond-length measurements, the precision of the method is +/-2 pm with a systematic overestimate of the internuclear distance by 3 +/- 1 pm. The method is expected to be a useful tool for investigating structural changes in macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.