BackgroundPreviously we demonstrated that the resection of primary 4T1 tumors only slightly prolongs mouse survival, but importantly, creates a “window of opportunity” with attenuated suppressor cell and increased activated T cell populations. This suggests that additional activation of the immune system by immunostimulatory agents during this period may enhance anti-tumor immunity and potentially eradicate micro-metastatic disease in this stringent model.We hypothesized that the immunostimulator Immunomax®, which is comprised of a plant-derived polysaccharide, is non-toxic in humans and stimulates immune defense during the infectious diseases treatment, may have also anti-tumor activity and be beneficial in the adjuvant setting when endogenous anti-tumor responses are present and during the “window of opportunity” in post-resection metastatic breast cancer model. Here we provide the initial report that Immunomax® demonstrates the capacity to eliminate micro-metastatic disease in the post-resection, 4T1 mouse model of breast cancer.MethodsThe efficacy of Immunomax® was evaluated by analyzing survival rate and the number of spontaneous clonogenic tumor cells in the lung homogenates of mice. The frequencies of activated NK, CD4+ and CD8+ cells as well as myeloid-derived suppressor cells and Treg cells were evaluated using flow cytometry. Highly purified mouse and human dendritic and NK cells were sorted and the effect of Immunomax® on activation status of these cells was assessed by flow cytometry. The property of Immunomax® as TLR-4 agonist was determined by NF-κB/SEAP reporter gene assay, WB, RT-PCR.ResultsImmunomax® injections significantly prolonged overall survival and cured 31% of mice. This immunostimulator activates DCs via the TLR-4, which in turn stimulates tumoricidal NK cells and in vitro, completely inhibits growth of 4T1 cells. Incubation of PBMC from healthy donors with Immunomax® activates NK cells via activation of plasmacytoid DC leading significantly higher efficacy in killing of human NK-target cells K562 compared with non-treated cells.ConclusionThis is the first demonstration that Immunomax® is a TLR-4 agonist and the first report of a documented role for this pharmaceutical grade immunostimulator in augmenting anti-tumor activity, suggesting that incorporation of Immunomax® into developing breast cancer therapeutic strategies may be beneficial and with less potential toxicity than checkpoint inhibitors.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-014-0322-y) contains supplementary material, which is available to authorized users.
The gastrointestinal (GI) mucosa is among the most complex systems in the body. It has a diverse commensal microbiome challenged continuously by food and microbial components while delivering essential nutrients and defending against pathogens. For these reasons, regulatory cells and receptors are likely to play a central role in maintaining the gut mucosal homeostasis. Recent lessons from cancer immunotherapy point out the critical role of the B7 negative co-stimulator PD-L1 in mucosal homeostasis. In this review, we summarize the current knowledge supporting the critical role of PD-L1 in gastrointestinal mucosal tolerance and how abnormalities in its expression and signaling contribute to gut inflammation and cancers. Abnormal expression of PD-L1 and/or the PD-1/PD-L1 signaling pathways have been observed in the pathology of the GI tract. We also discuss the current gap in our knowledge with regards to PD-L1 signaling in the GI tract under homeostasis and pathology. Finally, we summarize the current understanding of how this pathway is currently targeted to develop novel therapeutic approaches.
Colon adenocarcinoma is one of the most common malignancies, and it is highly lethal. Chemotherapy plays an important role in the treatment of colon cancer at various stages of the disease. The gut microbiome has emerged as a key player in colon cancer development and progression, and it can also alter the therapeutic agent’s efficacy and toxicities. Antibiotics can directly and/or indirectly affect the balance of the gut microbiome and, therefore, the clinical outcomes. In this article, we provided an overview of the composition of the gut microbiome under homeostasis and the mechanistic links between gut microbiota and colon cancer. The relationship between the use of oral antibiotics and colon cancer, as well as the impact of the gut microbiome on the efficacy and toxicities of chemotherapy in colon cancer, are discussed. Potential interventions to modulate microbiota and improve chemotherapy outcomes are discussed. Further studies are indicated to address these key gaps in the field and provide a scientific basis for the design of novel microbiota-based approaches for prevention/use as adjuvant therapeutics for patients with colon cancer.
We describe a method of isolation of human mesenchymal stromal cells from the umbilical cord (Wharton's jelly) and human placenta: amnion, placental villi, and trophoblast. Morphology, immunophenotypic characteristics, and differentiation potencies of isolated cells were studied. The capacity of mesenchymal stromal cells from extraembryonic tissues to osteogenic, adipogenic, and chondrogenic differentiation was demonstrated and the dynamics of this process was described. The isolated cells met the criteria for multipotent mesenchymal stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.