Massive investments in climate change mitigation and adaptation are projected during coming decades. Many of these investments will seek to modify how land is managed. The return on both types of investments can be increased through an understanding of land potential: the potential of the land to support primary production and ecosystem services, and its resilience. A Land‐Potential Knowledge System (LandPKS) is being developed and implemented to provide individual users with point‐based estimates of land potential based on the integration of simple, geo‐tagged user inputs with cloud‐based information and knowledge. This system will rely on mobile phones for knowledge and information exchange, and use cloud computing to integrate, interpret, and access relevant knowledge and information, including local knowledge about land with similar potential. The system will initially provide management options based on long‐term land potential, which depends on climate, topography, and relatively static soil properties, such as soil texture, depth, and mineralogy. Future modules will provide more specific management information based on the status of relatively dynamic soil properties such as organic matter and nutrient content, and of weather. The paper includes a discussion of how this system can be used to help distinguish between meteorological and edaphic drought.
High-quality soil maps are urgently needed by diverse stakeholders, but errors in existing soil maps are often unknown, particularly in countries with limited soil surveys. To address this issue, we used field soil data to assess the accuracy of seven spatial soil databases (Digital Soil Map of the World, Namibian Soil and Terrain Digital Database, Soil and Terrain Database for Southern Africa, Harmonized World Soil Database, SoilGrids1km, SoilGrids250m, and World Inventory of Soil Property Estimates) using topsoil texture as an example soil property and Namibia as a case study area. In addition, we visually compared topsoil texture maps derived from these databases. We found that the maps showed the correct topsoil texture in only 13% to 42% of all test sites, with substantial confusion occurring among all texture categories, not just those in close proximity in the soil texture triangle. Visual comparisons of the maps moreover showed that the maps differ greatly with respect to the number, types, and spatial distribution of texture classes. The topsoil texture information provided by the maps is thus sufficiently inaccurate that it would result in significant errors in a number of applications, including irrigation system design and predictions of potential forage and crop productivity, water runoff, and soil erosion. Clearly, the use of these existing maps for policy- and decision-making is highly questionable and there is a critical need for better on-site estimates and soil map predictions. We propose that mobile apps, citizen science, and crowdsourcing can help meet this need.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.