Предмет исследования: исследование направлено на преодоление таких проблем, как учет совместной работы сооружения с основанием, а также моделирование бетонных элементов конструкций нелинейными материалами с непосредственным армированием. Решение такой комплексной задачи не регламентировано действующими нормативными документами. Цели: исследуется поведение железобетонного здания при сейсмическом воздействии с корректным учетом взаимодействия сооружения с основанием и с применением комплексного подхода к моделированию самого сооружения. Материалы и методы: корректный учет взаимодействия здания с грунтовым массивом обеспечивается за счет применения методики взаимодействия сооружения с основанием. При сейсмическом воздействии в замкнутом грунтовом массиве наблюдается распространение волн и их отражения от его границ. Для преодоления этого нежелательного эффекта в задаче применяются «неотражающие» границы, которые задаются посредством PML-слоя. Применение PML-слоя помогает наблюдать реальную картину, происходящую во время землетрясения. При моделировании основных несущих элементов материал бетона задается по нелинейной модели. Арматура здания моделируется стержневыми конечными элементами и связывается с бетоном посредством лагранжево-эйлеровых сеток. Результаты: результаты проведенных исследований, а именно сравнения таких параметров, как относительный сдвиг этажа и накопление повреждений в элементах конструкции, показали, что без учета интерфейса взаимодействия сооружения с основанием мы имеем заниженные значения указанных параметров. Выводы: необходимо применение рассматриваемой методики при расчете зданий, проектируемых в сейсмических районах, а также решение подобных комплексных задач для исследования поведения железобетонных конструкций во время землетрясения.
Modern software packages for calculating buildings and structures for various types of action make it possible to simulate the structure and its elements in sufficient detail and to reflect adequately the behavior of this structure. However, detailed simulation with the use of solid finite elements requires a large amount of computing time to perform calculations. This problem can be solved by moving from solid finite elements to bar elements. At the same time, it is necessary to verify the bar calculation models. The article compares the calculation results of a reinforced concrete column simulated in two ways: with the use of solid finite elements based on the actual reinforcement and with the use of bar finite elements. The concrete material for the reference model is specified using a Continuous Surface Cap Model nonlinear model implemented in the LS-DYNA software package. This model reflects the non-linear behavior of concrete and enables to consider the joint behavior of concrete and reinforcing bars. The diagrams of concrete behavior in the bar model are adopted in accordance with SP 63.13330.2012 “Concrete and reinforced concrete structures. Revised edition of SP 52-101-2003”. The study compares the results obtained by the breaking load value and the fracture pattern of the column under consideration.
The problem of modeling reinforced concrete structures with bar finite elements using a nonlinear material that allows to consider the direct reinforcement is studied. An approach to the creation of a computational model of a reinforced concrete column is proposed, the peculiarity of which is to specify reinforcing bars at the appropriate integration points of the cross-section. As a material of reinforced concrete bar elements, a nonlinear material based on Eurocode-2 is used, which can model the nonlinear behavior of both concrete and reinforcement for different integration points. Numerical experiments were carried out using the LS-DYNA software package. The results of the calculation of the bar reinforced concrete column are compared with the data for the column modeled using solid finite elements with direct reinforcement. In addition, a comparative analysis of the studied column with the results of full-scale tests is performed. Studies have shown good convergence of stresses, strains, and displacements, as well as the coincidence of the value of the ultimate breaking load and the similar nature of the destruction of the reinforced concrete column.
The article presents the results of a numerical experiment consisting in a test of an eccentrically compressed reinforced concrete column and comparison of the results obtained with the results of experimental studies. With the development of numerical methods and software packages, methods (techniques) of modeling structural elements using more detailed calculation models with solid finite elements that allow direct consideration of the joint behavior of concrete and reinforcing bars become relevant. The use of such methods requires verification of individual load-bearing structural elements, such as columns, beams, slabs. The article refers to a nonlinear concrete model – Continuous Surface Cap Model (CSCM). This model is implemented in the LS-DYNA software package and enables to consider the joint behavior of reinforcing bars and concrete, using bar (for reinforcing bars) and solid (for concrete) finite elements. An eccentrically compressed reinforced concrete column of square section with dimensions of 150х150х1150 (h) mm is chosen as an object of modeling. The studies have shown that the ultimate breaking load on the column based on the results of numerical modeling is consistent with the experimental values (discrepancy does not exceed 3.4%). The pattern of development of cracks and fractures, obtained from the results of modeling in the LS-DYNA software package corresponds to the pattern of fractures obtained as a result of experimental studies. According to comparison of the results obtained, it can be argued that a numerical test showed good agreement with the results obtained during full-scale experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.