The article presents the results of a numerical experiment consisting in a bending test of a reinforced concrete beam and comparison of the results obtained with the results of full-scale experiments. In most cases, it is not possible to adequately consider all types of nonlinearities when using simplified bar and plate elements. The problem can be solved by using more detailed computational models with solid finite elements, allowing to consider directly the joint behavior of reinforcing bars and concrete. The studies were carried out in the LS-DYNA software package, which implemented the nonlinear concrete model – Continuous Surface Cap Model (CSCM). This model allows to consider the joint behavior of reinforcing bars and concrete, using bar (for reinforcing bars) and solid (for concrete) finite elements, thereby helping to overcome existing shortcomings in the diagrams of concrete behavior. As an object of modeling, a reinforced concrete statically determinable beam of rectangular section with dimensions of 1,000 х 50 х 100 (h) mm is considered. The conducted studies showed that the ultimate load on the beam based on the results of numerical modeling is quite consistent with the experimental value (8.5% discrepancy). The arrangement of cracks and the fracture pattern obtained from the modeling results in the LS-DYNA software package are in good agreement with the results of the tests. The LS-DYNA software package will allow correct solid modeling of bending reinforced concrete elements with specification of nonlinear diagrams of concrete and reinforcing bars deformation and can be used for research, calculation and design of reinforced concrete elements of buildings and structures.
Abstract. Some results of numerical experiments of testing concrete cubes and prisms on unconfined compression, and the comparison of results obtained with experimental and specified data, are presented in the article. When performing calculations of structures in a nonlinear setting, it is very important to choose adequate deformation diagrams or material models. Because of the fact that there are no instructions how to use the diagrams of concrete and armature deformation in collaboration of steel and concrete, the simulation of reinforced concrete structures by finite elements of the same type without any assumptions is impossible. Numerical experiments have been performed in the LS-DYNA software package. This software package allows simulating the collaboration of concrete and steeling with the help of three-dimensional (for concrete) and rod (for the reinforcement) finite elements. As samples, a cube and a prism with dimensions of 150x150x150 mm and 150x150x600 mm, respectively, have been taken. The samples are simulated by solid finite elements. For the simulation of concrete, the non-linear CSCM (Continuous Surface Cap Model) material is used. The tests were carried out with samples of the following classes of concrete as for cylinder compressive strength: C12, C16, C20, C25, C30, C35. This corresponds to the following classes of cube compression strength: B15, B20, B25, B30, B37, B45. The tests have been carried out considering the friction coefficients between the plates of a testing machine, and a sample. The performed researches have shown that the destruction nature of the samples in a numerical experiment corresponds to the failure nature in real tests. The investigated model of CSCM concrete can be used in the calculation of concrete and reinforced concrete structures with acceptable accuracy for main classes of concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.