The goal of this study was to assess how PD-L1 expression in tissue specimens of patients with main molecular subtypes of NMIBC (luminal, basal and double-negative p53-mutant) associates with relapsed-free survival in dependence on the tumor grade and prior treatment of primary bladder cancer. PD-L1 expressions on the membrane of neoplastic and CD8+ immune cells were assessed in tumor specimens (n = 240) of primary and relapsed luminal, basal and double-negative p53-mutant NMIBC. Association between relapse-free survival and PD-L1 expression was estimated for high- and low-grade relapsed NMIBC according to previous treatment and their molecular profile, using the Kaplan–Meier method, and assessed by using the log-rank test. Potential confounders were adjusted by Cox regression models. In a group of patients who underwent only TUR without intravesical therapy, there were significant differences in relapse time between high- and low-grade tumors in basal and luminal molecular subtypes; for basal relapsed carcinoma, RFS was shorter in cases where tumors were less malignant. Both intravesical mitomycin and Bacillus Calmette–Guerin (BCG) therapy significantly extended the time of recurrence of low-grade luminal and basal bladder malignancies with no intergroup differences in double-negative NMIBC. PD-L1 expression status was associated with RFS for luminal relapsed NMIBCs in the group without previous frontline intervention, and with RFS in the group of patients with luminal relapsed bladder cancer previously utilized BCG. Obtained results may be considered as a promising approach for further clinical implementation.
2-Amino-4H-chromene derivatives possess anticancer property proved on different in vivo and in vitro models of malignancies such breast, nasopharyngeal, bladder, ovary carcinomas, astrocytoma, and osteosarcoma. We assumed it might be effective to apply one of the derivatives as promising approach to lung carcinoma treatment. to evaluate how novel 4-aryl substituted 2-amino-4H-chromene derivative AX-554 impacts tumor growth and progression, as well as possible mechanisms for anticancer effect development on in vivo patient-derived heterotopic xenograft model of lung carcinoma in mice. This was an experimental in vivo study. 40 nu/nu BALB/c female mice were randomly allocated into four equal groups: Intact, control, reference, and main group. Animals of three latter groups were ingrafted with human-derived lung adenocarcinoma. Antitumor and antimetastatic action of AX-554 novel aminochromone derivative as a substance were studied. Mice survival was registered. Kinase of anaplastic lymphoma (ALK), tubulin Beta-3 (TUBB3), and c-mesenchymal-epithelial transition (MET) concentrations in the prime tumor nodes homogenates were determined by quantitative enzyme-linked immunosorbent assay. Dannet's parametric criterion and the nonparametric exact Fisher test were used. The normality of the distribution was determined using ANOVA. The survival curve was analyzed using Gehan's criterion with the Yates's correction. Aminochromone derivative possesses an inhibitory effect on human lung adenocarcinoma transplanted into nu/nu BALB/c female mice, as well as significant antimetastatic activity. About 50 mg/kg/day AX-554 intragastric course increases animals’ life expectancy of more than 3.3 times when compared with the control and induces remission in 60% of cases. The anticancer effect of the derivative is due to anti-ALK-mediated activation of tumor cells apoptosis and suppression TUBB3-dependent cell proliferation.
Introduction. Many anti-tumor drugs have a high potential for toxic damage to liver cells, which makes it necessary to identify molecular mechanisms of the development of the negative impact of drugs on the liver and to develop effective methods for preventing and correcting this adverse effect.
Materials and methods. The study was performed on 30 nonlinear white rats of both sexes weighing 180–220 g, divided into 3 equal groups (n = 10 in each): intact control, control with liver pathology and experimental group of rats receiving the test substance LBK-527 at a dose of 100 mg/kg/day intragastrically one hour before the administration of a hepatoxic cytarabine. In the animals of the latter two groups, acute drug-induced hepatitis was simulated by intravenous administration of 2 g/m2 cytarabine in physiological saline for 5 days. Liver pathomorphology was studied on specimens stained with hematoxylin and eosin, Sudan III and by Van Gieson; a semi-quantitative method for assessing the depth of inflammatory and dystrophic organ damage was used. In the blood plasma, the activity of ASAT, ALAT, GGTP, and APF was determined. Tissue concentrations of TNF-alpha, IL-10 and HGF were determined by quantitative ELISA. Expression of Bcl-2 and Ki-67 was studied by immunohistochemistry. The proliferation index was calculated.
Results and discussion. Daily administration of LBK-527 for 5 days restrains the depth of cytarabine-induced pathomorphological changes in the liver, reduces the prevalence of the dystrophic and inflammatory process, increases the anti-inflammatory and regenerative potential of the hepatic parenchyma, inhibits the programmed death of hepatocytes and reduces the activity of cytolytic and cholestatic syndromes.
Conclusion. Magnesium-containing cell-protective substance LBK-527 protects liver from cytarabine-induced injury.