In response to nutrients, energy sufficiency, hormones, and mitogenic agents, S6K1 phosphorylates several targets linked to translation. However, the molecular mechanisms whereby S6K1 is activated, encounters substrate, and contributes to translation initiation are poorly understood. We show that mTOR and S6K1 maneuver on and off the eukaryotic initiation factor 3 (eIF3) translation initiation complex in a signal-dependent, choreographed fashion. When inactive, S6K1 associates with the eIF3 complex, while the S6K1 activator mTOR/raptor does not. Cell stimulation promotes mTOR/raptor binding to the eIF3 complex and phosphorylation of S6K1 at its hydrophobic motif. Phosphorylation results in S6K1 dissociation, activation, and subsequent phosphorylation of its translational targets, including eIF4B, which is then recruited into the complex in a phosphorylation-dependent manner. Thus, the eIF3 preinitiation complex acts as a scaffold to coordinate a dynamic sequence of events in response to stimuli that promote efficient protein synthesis.
Converging signals from the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K) pathways are well established to modulate translation initiation. Less is known regarding the molecular basis of protein synthesis regulated by other inputs, such as agonists of the Ras/extracellular signal-regulated kinase (ERK) signaling cascade. Ribosomal protein (rp) S6 is a component of the 40S ribosomal subunit that becomes phosphorylated at several serine residues upon mitogen stimulation, but the exact molecular mechanisms regulating its phosphorylation and the function of phosphorylated rpS6 is poorly understood. Here, we provide evidence that activation of the p90 ribosomal S6 kinases (RSKs) by serum, growth factors, tumor promoting phorbol esters, and oncogenic Ras is required for rpS6 phosphorylation downstream of the Ras/ERK signaling cascade. We demonstrate that while ribosomal S6 kinase 1 (S6K1) phosphorylates rpS6 at all sites, RSK exclusively phosphorylates rpS6 at Ser 235/236 in vitro and in vivo using an mTORindependent mechanism. Mutation of rpS6 at Ser 235/236 reveals that phosphorylation of these sites promotes its recruitment to the 7-methylguanosine cap complex, suggesting that Ras/ERK signaling regulates assembly of the translation preinitiation complex. These data demonstrate that RSK provides an mTORindependent pathway linking the Ras/ERK signaling cascade to the translational machinery.In eukaryotic cells, the main rate-limiting step of translation is initiation, which is controlled by an array of proteins that respond to signaling cascades activated by extracellular signals (reviewed in Refs. 1-3). The mammalian target of rapamycin, mTOR, 4 is a conserved serine/threonine kinase that integrates signals from nutrients, energy sufficiency, and growth factors to regulate mammalian cell growth (reviewed in Refs. 4, 5-8).Under conditions of nutrient and energy sufficiency and insulin or mitogen stimulation, mTOR stimulates two important translational regulators, the ribosomal S6 kinases (S6K1 and S6K2) and the eukaryotic initiation factor 4E (eIF4E). eIF4E is crucial for ribosome recruitment as it binds to the 7-methylguanosine cap structure (m7GpppN, where N is any nucleotide) at the 5Ј-end of nearly all transcribed mRNAs to initiate cap-dependent translation (reviewed in Ref. 7). When mTOR is active, eIF4E nucleates the assembly of the translation preinitiation complex through recruitment of numerous initiation factors, resulting in association of the ribosomal subunits to the mRNA. S6K1 and S6K2 are serine/threonine kinases directly stimulated by mTOR which in turn, phosphorylate substrates involved in cell and body size (5, 6). S6K1 phosphorylates several substrates located in the cytoplasm and the nucleus, including the ribosomal protein (rp) S6 (reviewed in Ref. 9).Ribosomal protein S6 is one of 33 proteins that comprise the 40 S ribosomal subunit and represents the most extensively studied substrate of S6K1 (10). Because the initial discovery that liver-derived rpS6 was phosphoryla...
Resveratrol is a nutraceutical with several therapeutic effects. It has been shown to mimic effects of caloric restriction, exert anti-inflammatory and anti-oxidative effects, and affect the initiation and progression of many diseases through several mechanisms. While there is a wealth of in vitro and in vivo evidence that resveratrol could be a promising therapeutic agent, clinical trials must confirm its potential. In this work, we reviewed the current clinical data available regarding the pharmacological action of resveratrol. Most of the clinical trials of resveratrol have focused on cancer, neurological disorders, cardiovascular diseases, diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity. We found that for neurological disorders, cardiovascular diseases, and diabetes, the current clinical trials show that resveratrol was well tolerated and beneficially influenced disease biomarkers. However resveratrol had ambiguous and sometimes even detrimental effects in certain types of cancers and in NAFLD. In most of the clinical trials, the major obstacle presented was resveratrol’s poor bioavailability. Thus, this work provides useful considerations for the planning and design of future pre-clinical and clinical research on resveratrol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.