Brucellosis is an urgent infectious disease of livestock and wild animals and the commonest human zoonosis. Diagnosis of brucellosis is rather complicated and it has to be obligatorily confirmed by laboratory testing. Direct bacteriological and molecular methods and indirect serological tests are used for brucellosis diagnostics. The choice of the diagnostic tools depends on the overall epidemiological situation in the region and the objectives of the study: validation of the diagnosis, screening (monitoring), cross-sectional studies or confirmation of brucellosis-free status of the region. The review describes current bacteriological, serological and molecular methods, routinely used for the diagnosis of brucellosis in humans and animals. The perspectives of brucellosis diagnostics are also discussed.
Type III interferons (lambda IFNs) are a quite new, small family of three closely related cytokines with interferon-like activity. Attention to IFN-λ is mainly focused on direct antiviral activity in which, as with IFN-α, viral genome replication is inhibited without the participation of immune system cells. The heterodimeric receptor for lambda interferons is exposed mainly on epithelial cells, which limits its possible action on other cells, thus reducing the likelihood of developing undesirable side effects compared to type I IFN. In this study, we examined the antiviral potential of exogenous human IFN-λ1 in cellular models of viral infection. To study the protective effects of IFN-λ1, three administration schemes were used: ‘preventive’ (pretreatment); ‘preventive/therapeutic’ (pre/post); and ‘therapeutic’ (post). Three IFN-λ1 concentrations (from 10 to 500 ng/mL) were used. We have shown that human IFN-λ1 restricts SARS-CoV-2 replication in Vero cells with all three treatment schemes. In addition, we have shown a decrease in the viral loads of CHIKV and IVA with the ‘preventive’ and ‘preventive/therapeutic’ regimes. No significant antiviral effect of IFN-λ1 against AdV was detected. Our study highlights the potential for using IFN-λ as a broad-spectrum therapeutic agent against respiratory RNA viruses.
BackgroundInfluenza A virus (IAV) is a segmented negative-sense RNA virus that causes seasonal epidemics and periodic pandemics in humans. Two regions (nucleotide positions 82–148 and 497–564) in the positive-sense RNA of the NS segment fold into a multi-branch loop or hairpin structures.ResultsWe studied 25,384 NS segment positive-sense RNA unique sequences of human and non-human IAVs in order to predict secondary RNA structures of the 82–148 and 497–564 regions using RNAfold software, and determined their host- and lineage-specific distributions. Hairpins prevailed in avian and avian-origin human IAVs, including H1N1pdm1918 and H5N1. In human and swine IAV hairpins distribution varied between evolutionary lineages.ConclusionsThese results suggest a possible functional role for these RNA secondary structures and the need for experimental evaluation of these structures in the influenza life cycle.Electronic supplementary materialThe online version of this article (doi:10.1186/s13104-016-2083-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.