The design research and education landscapes are changing. The widespread development and use of technologies such as Mixed Reality (MR) and the diffusion of Head-Mounted Displays (HMDs) available at low cost are causing a shift in design education toward the Metaverse. In this ever-changing scenario, there is a need to rethink design and teaching methods. However, scientific literature lacks the ability to provide contributions that include MR technology education in the industrial design program. We, therefore, present an innovative laboratory with an integrated multidisciplinary approach that starts from the fundamentals of interaction design and aims to teach students how to design next-generation MR interfaces for the Metaverse. The lab combines theory and practice within three courses: Information Design, Information Systems, and Virtual Design and Simulation. Industrial design students follow a precise multidisciplinary method consisting of five steps, from state-of-the-art analysis to the presentation of a final group design of an MR user interface. Thus, we introduce a class case study by presenting the outcomes of a semester project in the field of household appliances. Evaluation of the teaching method is conducted through a semi-structured questionnaire. Preliminary results show positive outcomes from students in terms of acceptance, effectiveness, usefulness, efficiency, and satisfaction with the teaching method adopted for the laboratory.
With the high growth and prosperity of e-commerce, the retail industry needs to explore new technologies that improve digital shopping experiences. In the current technological scenario, Virtual Reality (VR) emerges as a tool and an opportunity for enhancing shopping activities, especially for the fashion industry. This study explores whether using Immersive Virtual Reality (IVR) technologies enhances the shopping experience in the fashion industry compared to Desktop Virtual Reality (DVR). A within-subject experiment was carried out involving a sample of 60 participants who completed a simulated shopping experience. In the first mode (DVR), a desktop computer setup was used to test the shopping experience using a mouse and keyboard for navigation. The second mode (IVR) exploited a Head-Mounted Display (HMD), and controllers, that allowed navigation while seated on a workstation to avoid sickness. Participants had to find a bag in the virtual shop and explore its features until they were ready to purchase it. Post-hoc measures of time duration of the shopping experience, hedonic and utilitarian values, user experience, and cognitive load were compared. Results showed that participants experienced higher hedonism and utilitarianism in the IVR shop compared to DVR. The cognitive load was comparable in both modes, while user experience was higher in IVR. In addition, the time duration of the shopping experience was higher in IVR, where users stayed immersed and enjoyed it for longer. This study has implications for fashion industry research, as the use of IVR can potentially lead to novel shopping patterns by enhancing the shopping experience.
The choice of furniture in a retail store is usually based on a product catalog and simplistic product renderings with different configurations. We present a preliminary field study that tests a Multi-Sensory In-Store Virtual Reality Customer Journey (MSISVRCJ) through a virtual catalog and a product configurator to support furnishings sales. The system allows customers to stay immersed in the virtual environment (VE) while the sales expert changes the colors, textures, and finishes of the furniture, also exploring different VEs. In addition, customers can experience realistic tactile feedback with in-store samples of furniture they can test. The journey is implemented for a furniture manufacturer and tested in a flagship store. Fifty real customers show positive feedback in terms of general satisfaction, perceived realism, and acceptance. This method can increase purchase confidence, reduce entrepreneurial costs, and leverage in-store versus online shopping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.