Technology is rapidly changing the world around us and thus, there is a need to adjust education by teaching children skills that are required in the fast-paced digital life. One problem-solving skillset, which has gained considerable attention in the last couple of years, is computational thinking (CT). Up to now, many countries have already implemented CT as an integral part of their education curricula, however, there is still often the misconception that teaching CT requires high technical effort and profound knowledge of computer science. Whereas CT is useful in any subject, it is not necessarily linked to technology and helps children to tackle problems by applying skills that are used in computer science. One effective hands-on approach to foster CT in every subject is modeling. A model is a simplified and reduced version of the real world and modeling is the process of creating it. In this paper, the authors focus on fostering CT skills with models from the field of computer science (CS) in foreign language teaching. The authors present several CS models, that have proven to be useful in language teaching, demonstrate how this approach can foster CT skills and give an insight into their research.
After Jeanette Wing in 2006 described computational thinking (CT) as a fundamental skill for everyone just like reading or arithmetic, it has become a widely discussed topic all over the world. Computational thinking is a problem-solving skill set that is used to tackle problems in computer science. However, these skills, such as pattern recognition, decomposition, abstraction, generalization, and algorithmic thinking, are useful in other domains, as well. This study focuses on the use of CT skills to approach complex linguistic learning tasks in the foreign language classroom. To foster these problem-solving skills, an innovative method is used. The authors take advantage of computer science (CS) models (e.g. Unified Modeling Language – UML) and transform them into a teaching and learning tool. This paper describes the design and implementation of a survey used to detect students’ use of learning strategies that are linked to computational thinking. This survey is an instrument used in a multiple-case study and was administered at the beginning of the interventions. The participants of the study were learners of English and Spanish (n=66) from two secondary schools. Results indicated that the students were medium to low users of learning strategies that demand problem-solving skills related to computational thinking. Differences by gender were also found, with females reporting higher use of learning strategies than males. To conclude, the study showed a low use of strategies among students and highlighted the importance of introducing students to learning strategies and fostering skills needed for future professional life.
Today’s teaching and didactical methods are progressively aiming to integrate digital technologies, computational thinking (CT), and basic computer science concepts into other subjects. An innovative and creative way of combining and integrating CT and teaching cross-curricular skills without digital devices is to include the game Poly-Universe (PolyUni). According to previous research, the game is expected to have a positive effect on visual perceptual progress, including isolation, and the development of shape-background skills. So far, however, comparatively few attempts have been made to explore the educational possibilities of PolyUni for different school levels and subjects, besides mathematics. Therefore, this article aims to close this gap by exploring how PolyUni can be used to promote CT in three subjects: physical education (PE), digital education (DGE), and biology (B). Furthermore, it evaluates whether the pre-defined learning objectives in those subjects have been achieved, and examines how PolyUni combines the requirements of the different curricula in Austrian secondary school, based on self-designed tasks. Additionally, further aspects of PolyUni such as engagement and collaboration are discussed. To explore the above-mentioned benefits, a mixed-methods study was implemented, whereas the workshops and accompanying teaching materials (e.g., worksheets) were developed based on the COOL Informatics concept. The participant observation method was employed for qualitative data collection, and a self-designed assessment grid as well as additional picture analysis were used for the quantitative data. PolyUni was introduced in three different workshops at Austrian secondary schools with 80 students observed and analyzed. Based on the present data, it can be assumed that PolyUni supports achieving the requirements of the different curricula and pre-defined teaching and learning objectives in a playful way. Furthermore, the game not only promotes CT in secondary school but also encourages enjoyment and collaboration between peers in biological, digital, and physical education lessons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.