Since the beginning of March 2020, the coronavirus disease 2019 (COVID-19) pandemic has caused more than 13,000 deaths in Europe, almost 54% of which has occurred in Italy. The Italian healthcare system is experiencing a stressful burden, especially in terms of intensive care assistance. In fact, the main clinical manifestation of COVID-19 patients is represented by an acute hypoxic respiratory failure secondary to bilateral pulmonary infiltrates, that in many cases, results in an acute respiratory distress syndrome and requires an invasive ventilator support. A precocious respiratory support with non-invasive ventilation or high flow oxygen should be avoided to limit the droplets' air-dispersion and the healthcare workers' contamination. The application of a continuous positive airway pressure (CPAP) by means of a helmet can represent an effective alternative to recruit diseased alveolar units and improve hypoxemia. It can also limit the room contamination, improve comfort for the patients, and allow for better clinical assistance with long-term tolerability. However, the initiation of a CPAP is not free from pitfalls. It requires a careful titration and monitoring to avoid a delayed intubation. Here, we discuss the rationale and some important considerations about timing, criteria, and monitoring requirements for patients with COVID-19 respiratory failure requiring a CPAP treatment.
Diaphragm muscle dysfunction is increasingly recognized as an important element of several diseases including neuromuscular disease, chronic obstructive pulmonary disease and diaphragm dysfunction in critically ill patients. Functional evaluation of the diaphragm is challenging. Use of volitional maneuvers to test the diaphragm can be limited by patient effort. Non-volitional tests such as those using neuromuscular stimulation are technically complex, since the muscle itself is relatively inaccessible. As such, there is a growing interest in using imaging techniques to characterize diaphragm muscle dysfunction. Selecting the appropriate imaging technique for a given clinical scenario is a critical step in the evaluation of patients suspected of having diaphragm dysfunction. In this review, we aim to present a detailed analysis of evidence for the use of ultrasound and non-ultrasound imaging techniques in the assessment of diaphragm dysfunction. We highlight the utility of the qualitative information gathered by ultrasound imaging as a means to assess integrity, excursion, thickness, and thickening of the diaphragm. In contrast, quantitative ultrasound analysis of the diaphragm is marred by inherent limitations of this technique, and we provide a detailed examination of these limitations. We evaluate non-ultrasound imaging modalities that apply static techniques (chest radiograph, computerized tomography and magnetic resonance imaging), used to assess muscle position, shape and dimension. We also evaluate non-ultrasound imaging modalities that apply dynamic imaging (fluoroscopy and dynamic magnetic resonance imaging) to assess diaphragm motion. Finally, we critically review the application of each of these techniques in the clinical setting when diaphragm dysfunction is suspected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.