Basic oxygen furnace slags (BOS) are by-products of basic oxygen steel production. Whereas the solubility of some elements from these slags has been well investigated, information about the mineralogy and related leaching, i.e., availability of the environmentally relevant elements chromium (Cr), molybdenum (Mo), and vanadium (V), is still lacking. The aim of this study was to investigate these issues with a modified, four-fraction-based, sequential extraction procedure (F1-F4), combined with X-ray diffraction, of two BOS. Extractants with increasing strength were used (F1 demineralized water, F2 CHCOOH + HCl, F3 NaEDTA + NHOH·HCl, and F4 HF + HNO + HO), and after each fraction, X-ray diffraction was performed. The recovery of Cr was moderate (66.5%) for one BOS, but significantly better (100.2%) for the other one. High recoveries were achieved for the other elements (Mo, 100.8-107.9% and V, 112.6-87.0%), indicating that the sequential extraction procedure was reliable when adapted to BOS. The results showed that Cr and Mo primarily occurred in F4, representing rather immobile elements under natural conditions, which were strongly bound into/onto Fe minerals (srebrodolskite, magnetite, hematite, or wustite). In contrast, V was more mobile with proportional higher findings in F2 and F3, and the X-ray diffraction results reveal that V was not solely bound into Ca minerals (larnite, hatrurite, kirschsteinite, and calcite), but also bound to Fe minerals. The results indicated that the total amount of recovery was a poor indicator of the availability of elements and did not correspond to the leaching of elements from BOS.