Summary Sera from 182 newly diagnosed breast cancer patients were assayed for antibodies to p53 using an enzyme-linked immunosorbent assay (ELISA) method, and antibodies were detected in 48 (26%) compared with 1 out of 76 (1.3%) normal control volunteers (P= 0.0001). In breast cancer patients, autoantibodies were found in all stages of disease progression: carcinoma in situ, primary invasive breast cancer and in metastatic disease. In the subset of patients in whom sequential sera were assessed over a 6 month period, changes in the p53 antibody titres were observed. The presence of antibodies to p53 correlated positively with high histological grade (P = 0.0012) and a history of second primary cancer (six positive out of eight cases). The incidence of autoantibodies was lower in those patients with a first-degree relative with breast cancer (P = 0.046). Out of 68 patients, there was a significant correlation between positive p53 autoantibody status and the detection of p53 protein in the tissue sections by immunocytochemistry (P = 0.002). In the seronegative patients, positive p53 tumour staining was strongly associated with a family history of breast cancer (P = 0.009). The p53 protein overexpressed in heritable breast cancers may therefore be less immunogenic. The presence of p53 autoantibodies provides important additional information to immunochemistry and may identify patients with aggressive histological types of breast cancer.
We performed a genetic suppressor element screen to identify genes whose inhibition bypasses cellular senescence. A normalized library of fragmented cDNAs was used to select for elements that promote immortalization of rat embryo fibroblasts. Fragments isolated by the screen include those with homology to genes that function in intracellular signaling, cellular adhesion and contact, protein degradation, and apoptosis. They include mouse Tid1, a homologue of the Drosophila tumor suppressor gene l(2)tid, recently implicated in modulation of apoptosis as well as gamma interferon and NF-B signaling. We show that GSE-Tid1 enhances immortalization by human papillomavirus E7 and simian virus 40 T antigen and cooperates with activated ras for transformation. Expression of Tid1 is upregulated upon cellular senescence in rat and mouse embryo fibroblasts and premature senescence of REF52 cells triggered by activated ras. In accordance with this, spontaneous immortalization of rat embryo fibroblasts is suppressed upon ectopic expression of Tid1. Modulation of endogenous Tid1 activity by GSE-Tid1 or Tid1-specific RNA interference alleviates the suppression of tumor necrosis factor alpha-induced NF-B activity by Tid1. We also show that NF-B sequence-specific binding is strongly downregulated upon senescence in rat embryo fibroblasts. We therefore propose that Tid1 contributes to senescence by acting as a repressor of NF-B signaling.
Priming haematopoietic stem/progenitor cells (HSPCs) in vitro with specific chromatin modifying agents and cytokines under serum-free-conditions significantly enhances engraftable HSC numbers. We extend these studies by culturing human CD133+ HSPCs on nanofibre scaffolds to mimic the niche for 5-days with the HDAC inhibitor Scriptaid and cytokines. Scriptaid increases absolute Lin−CD34+CD38−CD45RA−CD90+CD49f+ HSPC numbers, while concomitantly decreasing the Lin−CD38−CD34+CD45RA−CD90− subset. Hypothesising that Scriptaid plus cytokines expands the CD90+ subset without differentiation and upregulates CD90 on CD90− cells, we sorted, then cultured Lin−CD34+CD38−CD45RA−CD90− cells with Scriptaid and cytokines. Within 2-days and for at least 5-days, most CD90− cells became CD90+. There was no significant difference in the transcriptomic profile, by RNAsequencing, between cytokine-expanded and purified Lin−CD34+CD38−CD45RA−CD49f+CD90+ cells in the presence or absence of Scriptaid, suggesting that Scriptaid maintains stem cell gene expression programs despite expansion in HSC numbers. Supporting this, 50 genes were significantly differentially expressed between CD90+ and CD90− Lin−CD34+CD38−CD45RA−CD49f+ subsets in Scriptaid-cytokine- and cytokine only-expansion conditions. Thus, Scriptaid treatment of CD133+ cells may be a useful approach to expanding the absolute number of CD90+ HSC, without losing their stem cell characteristics, both through direct effects on HSC and potentially also conversion of their immediate CD90− progeny into CD90+ HSC.
The main limitations of hematopoietic cord blood (CB) transplantation, viz, low cell dosage and delayed reconstitution, can be overcome by ex vivo expansion. CB expansion under conventional culture causes rapid cell differentiation and depletion of hematopoietic stem and progenitor cells (HSPCs) responsible for engraftment. In this study, we use combinatorial cell culture technology (CombiCult Ò ) to identify medium formulations that promote CD133+ CB HSPC proliferation while maintaining their phenotypic characteristics. We employed second-generation CombiCult screens that use electrospraying technology to encapsulate CB cells in alginate beads. Our results suggest that not only the combination but also the order of addition of individual components has a profound influence on expansion of specific HSPC populations. Top protocols identified by the CombiCult screen were used to culture human CD133 + CB HSPCs on nanofiber scaffolds and validate the expansion of the phenotypically defined CD34 + CD38lo/-+ population of hematopoietic stem cells and their differentiation into defined progeny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.