Studies of steroid modifications catalyzed by microbial whole cells represent a well-established research area in white biotechnology. Still, advances over the last decade in genetic and metabolic engineering, whole-cell biocatalysis in non-conventional media, and process monitoring raised research in this field to a new level. This review summarizes the data on microbial steroid conversion obtained since 2003. The key reactions of structural steroid functionalization by microorganisms are highlighted including sterol side-chain degradation, hydroxylation at various positions of the steroid core, and redox reactions. We also describe methods for enhancement of bioprocess productivity, selectivity of target reactions, and application of microbial transformations for production of valuable pharmaceutical ingredients and precursors. Challenges and prospects of whole-cell biocatalysis applications in steroid industry are discussed.
The steroid superfamily includes a wide range of compounds that are essential for living organisms of the animal and plant kingdoms. Structural modifications of steroids highly affect their biological activity. In this review, we focus on hydroxylation of steroids by bacterial hydroxylases, which take part in steroid catabolic pathways and play an important role in steroid degradation. We compare three distinct classes of metalloenzymes responsible for aerobic or anaerobic hydroxylation of steroids, namely: cytochrome P450, Rieske-type monooxygenase 3-ketosteroid 9α-hydroxylase, and molybdenum-containing steroid C25 dehydrogenases. We analyze the available literature data on reactivity, regioselectivity, and potential application of these enzymes in organic synthesis of hydroxysteroids. Moreover, we describe mechanistic hypotheses proposed for all three classes of enzymes along with experimental and theoretical evidences, which have provided grounds for their formulation. In case of the 3-ketosteroid 9α-hydroxylase, such a mechanistic hypothesis is formulated for the first time in the literature based on studies conducted for other Rieske monooxygenases. Finally, we provide comparative analysis of similarities and differences in the reaction mechanisms utilized by bacterial steroid hydroxylases.
Mycobacterium sp. VKM Ac-1815D and its derivatives with altered resistance to antibacterial agents were able to produce androst-4-ene-3,17-dione (AD) as a major product from sitosterol. In this study, those strains were subjected to subsequent mutagenization by chemical agents and UV irradiation in combination with sitosterol selection pressure. The mutant Mycobacterium sp. 2-4 M was selected, being capable of producing 9alpha-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) as a major product from sitosterol, with a 50% molar yield. Along with 9-OH-AD, both AD and 9alpha-hydroxylated metabolites with a partially degraded side-chain were formed from sitosterol by the mutant strain. The strain was unable to degrade 9-OH-AD, but degraded androsta-1,4-diene-3,17-dione (ADD), thus indicating a deficiency in steroid 1(2)-dehydrogenase and the presence of 9alpha-hydroxylase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.