The interrelationship between IgAs and microbiota diversity is still unclear. Here we show that BALB/c mice had higher abundance and diversity of IgAs than C57BL/6 mice and that this correlated with increased microbiota diversity. We show that polyreactive IgAs mediated the entrance of non-invasive bacteria to Peyer's patches, independently of CX3CR1(+) phagocytes. This allowed the induction of bacteria-specific IgA and the establishment of a positive feedback loop of IgA production. Cohousing of mice or fecal transplantation had little or no influence on IgA production and had only partial impact on microbiota composition. Germ-free BALB/c, but not C57BL/6, mice already had polyreactive IgAs that influenced microbiota diversity and selection after colonization. Together, these data suggest that genetic predisposition to produce polyreactive IgAs has a strong impact on the generation of antigen-specific IgAs and the selection and maintenance of microbiota diversity.
Sil.G. helped in the execution of the mouse experiments; B.F., M.M. and Gr.P. performed 16s rRNA metagenomic analysis; L.M. and W.V. designed and carried out histological analyses. G.N. performed ex-vivo stimulation of human colonic mucosa experiments; A.B. performed confocal analyses; J.T. executed metabolomic analyses; B.O. helped in the execution of in vitro experiments; K.A. and K.H. isolated F.PB1 and carried out GF experiments; S.A. and S.G. set up F. PB1 growth and supernatant production; S.C. set up H. biformis and L. lactis growth and supernatant production; G.F. performed FACS analyses; F.A. and N.S. performed phylogenetic analysis and human CRC dataset interrogation; G.P. participated with ideas and results interpretation; M.R. ideated the study, coordinated the work, and wrote the manuscript.
Metagenomics is providing an unprecedented access to the environmental microbial diversity. The amplicon-based metagenomics approach involves the PCR-targeted sequencing of a genetic locus fitting different features. Namely, it must be ubiquitous in the taxonomic range of interest, variable enough to discriminate between different species but flanked by highly conserved sequences, and of suitable size to be sequenced through next-generation platforms. The internal transcribed spacers 1 and 2 (ITS1 and ITS2) of the ribosomal DNA operon and one or more hyper-variable regions of 16S ribosomal RNA gene are typically used to identify fungal and bacterial species, respectively. In this context, reliable reference databases and taxonomies are crucial to assign amplicon sequence reads to the correct phylogenetic ranks. Several resources provide consistent phylogenetic classification of publicly available 16S ribosomal DNA sequences, whereas the state of ribosomal internal transcribed spacers reference databases is notably less advanced. In this review, we aim to give an overview of existing reference resources for both types of markers, highlighting strengths and possible shortcomings of their use for metagenomics purposes. Moreover, we present a new database, ITSoneDB, of well annotated and phylogenetically classified ITS1 sequences to be used as a reference collection in metagenomic studies of environmental fungal communities. ITSoneDB is available for download and browsing at http://itsonedb.ba.itb.cnr.it/.
The rapid expansion of multicellular native and alien species outbreaks in aquatic and terrestrial ecosystems (bioinvasions) may produce significant impacts on bacterial community dynamics and nutrient pathways with major ecological implications. In aquatic ecosystems, bioinvasions may cause adverse effects on the water quality resulting from changes in biological, chemical and physical properties linked to significant transformations of the microbial taxonomic and functional diversity. Here we used an effective and highly sensitive experimental strategy, bypassing the efficiency bottleneck of the traditional bacterial isolation and culturing method, to identify changes of the planktonic microbial community inhabiting a marine coastal lagoon (Varano, Adriatic Sea) under the influence of an outbreakforming alien jellyfish species. Water samples were collected from two areas that differed in their level of confinement inside in the lagoon and jellyfish densities (W, up to 12.4 medusae m -3 ; E, up to 0.03 medusae m -3 ) to conduct a snapshot microbiome analysis by a metagenomic approach. After extraction of the genetic material in the environmental water samples, we deepsequenced metagenomic amplicons of the V5-V6 region of the 16S rRNA bacterial gene by an Illumina MiSeq platform. Experiments were carried out in Caterina Manzari, Bruno Fosso and Marinella Marzano have contributed equally to this work.Stefano Piraino and Graziano Pesole are senior authors.Electronic supplementary material The online version of this article (doi:10.1007/s10530-014-0810-2) contains supplementary material, which is available to authorized users. triplicates, so six libraries of dual indexed amplicons of 420 bp were successfully sequenced on the MiSeq platform using a 2 9 250 bp paired-end sequencing strategy. Approximately 7.5 million paired-end reads (i.e. 15 million total reads) were generated, with an average of 2.5 million reads (1.25 M pairs) per sample replicate. The sequence data, analyzed through a novel bioinformatics pipeline (BioMaS), showed that the structure of the resident bacterial community was significantly affected by the occurrence of jellyfish outbreaks. Clear qualitative and quantitative differences were found between the western and eastern areas (characterized by many or few jellyfish), with 84 families, 153 genera and 324 species in the W samples, and 104 families, 199 genera and 331 species in the E samples. Significant differences between the two sampling areas were particularly detected in the occurrence of 16 families, 22 genera and 61 species of microbial taxa. This is the first time that a NGS platform has been used to screen the impact of jellyfish bioinvasions on the aquatic microbiome, providing a preliminary assessment of jellyfish-driven changes of the functional and structural microbial biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.