Abstract. Macrophytes growing in shallow coastal zones characterised by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH changes in shallow (5–12 m) seagrass (Posidonia oceanica) meadows spanning 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (ΩAr)) and O2 within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean, max and range pHNBS and max and range ΩAr. In June, vertical mixing (as Turbulent Kinetic Energy) influenced max and min ΩAr, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. Max and range ΩAr within the meadow showed a positive trend with the calcium carbonate load of the leaves, pointing to a possible link between structural parameters, ΩAr and carbonate deposition. Calcifying organisms, e.g. epiphytes with carbonate skeletons, may benefit from the modification of the carbonate system by the meadow. There is, however, concern for the ability of seagrasses to provide modifications of similar importance in the future. The predicted decline of seagrass meadows may alter the scope for alteration of pH within a seagrass meadow and in the water column above the meadow, particularly if shoot density and biomass decline, on which LAI is based. Organisms associated with seagrass communities may therefore suffer from the loss of pH buffering capacity in degraded meadows.
Macrophytes growing in shallow coastal zones characterized by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH ranges is in shallow (5–12 m) seagrass (Posidonia oceanica) meadows from 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (ΩAr) and O2 within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean and max pHNBS and max ΩAr. Oxygen production positively influenced the range and maximum pHNBS and the range of ΩAr. In June, vertical mixing (as Turbulent Kinetic Energy) influenced ΩAr, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. ΩAr was positively correlated with the calcium carbonate load of the leaves, demonstrating a direct link between structural parameters, ΩAr and carbonate deposition.
There was a direct relationship between ΩAr, influenced directly by meadow LAI, and CaCO3 content of the leaves. Therefore, calcifying organisms, e.g. epiphytes with carbonate skeletons, might benefit from the modification of the carbonate system by the meadow. The meadow might be capable of providing refugia for calcifiers by increasing pH and ΩAr through metabolic activity. There is, however, concern for the ability of seagrasses to provide this refugia function in the future. The predicted decline of seagrass meadows may alter the scope for alteration of pH within a seagrass meadow and in the water column above the meadow, particularly if shoot density and biomass decline, both strongly linked to LAI. Organisms associated with seagrass communities may therefore suffer from the loss of pH buffering capacity in degraded meadows
Over the last 50 years there has been an increased frequency and severity of negative impacts affecting marine fishery and aquaculture sectors, which claimed significant economic losses due to the interference of stinging gelatinous organisms with daily operational activities. Nevertheless, original scientific information on jellyfish-related incidents, their consequences, and potential preventative and mitigation countermeasures is limited and scattered across gray literature, governmental technical reports, and communication media. A literature scan searching for records of any interactions between jellyfish and the marine fishery/aquaculture sectors was carried out. Out of 553 papers, 90 contained original information, referring to more than 130 cases worldwide of negative impacts of jellyfish on marine fishery/aquaculture over the last century. Calling attention on too often neglected socio-economic and ecological impacts of jellyfish blooms, the purpose of this paper is to review and analyze the most up-to-date research on this subject and to provide a global perspective on the importance of jellyfish impacts and their cascading effects on marine fishery and aquaculture sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.