BackgroundNormal displacement of the conus medullaris with unilateral and bilateral SLR has been quantified and the "principle of linear dependence" has been described.PurposeExplore whether previously recorded movements of conus medullaris with SLRs are i) primarily due to transmission of tensile forces transmitted through the neural tissues during SLR or ii) the result of reciprocal movements between vertebrae and nerves.Study designControlled radiologic study.MethodsTen asymptomatic volunteers were scanned with a 1.5T magnetic resonance (MR) scanner using T2 weighted spc 3D scanning sequences and a device that permits greater ranges of SLR. Displacement of the conus medullaris during the unilateral and sham SLR was quantified reliably with a randomized procedure. Conus displacement in response to unilateral and sham SLRs was quantified and the results compared.ResultsThe conus displaced caudally in the spinal canal by 3.54±0.87 mm (mean±SD) with unilateral (p≤.001) and proximally by 0.32±1.6 mm with sham SLR (p≤.542). Pearson correlations were higher than 0.99 for both intra- and inter-observer reliability and the observed power was 1 for unilateral SLRs and 0.054 and 0.149 for left and right sham SLR respectively.ConclusionsFour relevant points emerge from the presented data: i) reciprocal movements between the spinal cord and the surrounding vertebrae are likely to occur during SLR in asymptomatic subjects, ii) conus medullaris displacement in the vertebral canal with SLR is primarily due to transmission of tensile forces through the neural tissues, iii) when tensile forces are transmitted through the neural system as in the clinical SLR, the magnitude of conus medullaris displacement prevails over the amount of bone adjustment.
Modic change (MC) is considered an independent risk factor for low back pain (LBP) but its aetiology remains unclear. In this cross-sectional, large-scale population-based study we sought to characterise associations between endplate defect (ED) and MC in a population sample of broad age range. The study population consisted of 831 twin volunteers (including 4155 discs and 8310 endplates) from TwinsUK. Lumbar T2-weighted MR images were coded for ED and MC. Total endplate (TEP) score was calculated at each intervertebral disc while receiver operating curves (ROC) were calculated to define critical endplate values predictive of MC. MC was detected in 32.1% of the subjects, with a significantly higher prevalence at lower lumbar levels (3.5% at L1/2-L3/4 vs. 15.9% at L4/5-L5/S1, p < 0.001). TEP score was strongly and independently associated with MC at each lumbar level (risk estimates from 1.49 to 2.44; all p ≤ 0.001) after adjustment for age, sex, BMI and twin pairing. ROC analysis showed a TEP score cut-off of 6 above which there was a significantly higher prevalence of MC. In conclusion, ED were strongly associated with MC at every lumbar level. These findings support the hypothesis that endplate defect is a major initiating factor for the cascade of events that may include disc degeneration (DD) and MC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.