People perceive their recorded voice differently from their actively spoken voice. The uncanny valley theory proposes that as an object approaches humanlike characteristics, there is an increase in the sense of familiarity; however, eventually a point is reached where the object becomes strangely similar and makes us feel uneasy. The feeling of discomfort experienced when people hear their recorded voice may correspond to the floor of the proposed uncanny valley. To overcome the feeling of eeriness of own-voice recordings, previous studies have suggested equalization of the recorded voice with various types of filters, such as step, bandpass, and low-pass, yet the effectiveness of these filters has not been evaluated. To address this, the aim of experiment 1 was to identify what type of voice recording was the most representative of one’s own voice. The voice recordings were presented in five different conditions: unadjusted recorded voice, step filtered voice, bandpass filtered voice, low-pass filtered voice, and a voice for which the participants freely adjusted the parameters. We found large individual differences in the most representative own-voice filter. In order to consider roles of sense of agency, experiment 2 investigated if lip-synching would influence the rating of own voice. The result suggested lip-synching did not affect own voice ratings. In experiment 3, based on the assumption that the voices used in previous experiments corresponded to continuous representations of non-own voice to own voice, the existence of an uncanny valley was examined. Familiarity, eeriness, and the sense of own voice were rated. The result did not support the existence of an uncanny valley. Taken together, the experiments led us to the following conclusions: there is no general filter that can represent own voice for everyone, sense of agency has no effect on own voice rating, and the uncanny valley does not exist for own voice, specifically.
We have a keen sensitivity when it comes to the perception of our own voices. We can detect not only the differences between ourselves and others, but also slight modifications of our own voices. Here, we examined the neural correlates underlying such sensitive perception of one’s own voice. In the experiments, we modified the subjects’ own voices by using five types of filters. The subjects rated the similarity of the presented voices to their own. We compared BOLD (Blood Oxygen Level Dependent) signals between the voices that subjects rated as least similar to their own voice and those they rated as most similar. The contrast revealed that the bilateral superior temporal gyrus exhibited greater activities while listening to the voice least similar to their own voice and lesser activation while listening to the voice most similar to their own. Our results suggest that the superior temporal gyrus is involved in neural sharpening for the own-voice. The lesser degree of activations observed by the voices that were similar to the own-voice indicates that these areas not only respond to the differences between self and others, but also respond to the finer details of own-voices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.