Resolving flow geometry in the mantle wedge is central to understanding the thermal and chemical structure of subduction zones, subducting plate dehydration, and melting that leads to arc volcanism, which can threaten large populations and alter climate through gas and particle emission. Here we show that isotope geochemistry and seismic velocity anisotropy provide strong evidence for trench-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. This finding contradicts classical models, which predict trench-normal flow owing to the overlying wedge mantle being dragged downwards by the subducting plate. The isotopic signature of central Costa Rican volcanic rocks is not consistent with its derivation from the mantle wedge or eroded fore-arc complexes but instead from seamounts of the Galapagos hotspot track on the subducting Cocos plate. This isotopic signature decreases continuously from central Costa Rica to northwestern Nicaragua. As the age of the isotopic signature beneath Costa Rica can be constrained and its transport distance is known, minimum northwestward flow rates can be estimated (63-190 mm yr(-1)) and are comparable to the magnitude of subducting Cocos plate motion (approximately 85 mm yr(-1)). Trench-parallel flow needs to be taken into account in models evaluating thermal and chemical structure and melt generation in subduction zones.
[1] We present the first regional surface velocity field for Central America, showing crustal response to interaction of the Cocos and Caribbean plates. Elastic half-space models for interseismic strain accumulation on the dipping subduction plate boundary fit the GPS data well and show strain accumulation offshore and beneath the Nicoya and Osa peninsulas in Costa Rica but not in Nicaragua. Since large subduction zone earthquakes occur in Nicaragua, we suggest that interseismic locking in Nicaragua and some other parts of Central America occurs but is mainly shallow, <20 km depth, too far offshore to be detected by our on-land GPS measurements. Our data also show significant trench-parallel motion for most of the region, generally interpreted as due to oblique convergence and strong mechanical coupling between subducting and overriding plates. However, trench-parallel motion is also observed in central Costa Rica, where plate convergence is normal to the trench, and in the Nicaraguan fore arc, where trench-parallel motion is fast, up to 9 mm a À1 , but mechanical coupling is low. A finite element model of collision (as opposed to subduction) involving the aseismic Cocos Ridge also fits the GPS surface velocity field, most significantly reproducing the pattern of trench-parallel motion. We infer that buoyant, thickened CNS-2-Cocos Ridge crust resists normal subduction and instead acts as an indenter to the Caribbean plate, driving crustal shortening in southern Costa Rica and contributing to trench-parallel fore-arc motion in Costa Rica and perhaps Nicaragua as a type of tectonic escape.
[1] New seismic and geodetic data from Costa Rica provide insight into seismogenic zone processes in Central America, where the Cocos and Caribbean plates converge. Seismic data are from combined land and ocean bottom deployments in the Nicoya peninsula in northern Costa Rica and near the Osa peninsula in southern Costa Rica. In Nicoya, inversion of GPS data suggests two locked patches centered at 14 ± 2 and 39 ± 6 km depth. Interplate microseismicity is concentrated in the more freely slipping intermediate zone, suggesting that small interseismic earthquakes may not accurately outline the updip limit of the seismogenic zone, the rupture zone for future large earthquakes, at least over the short ($1 year) observation period. We also estimate northwest motion of a coastal ''sliver block'' at 8 ± 3 mm/yr, probably related to oblique convergence. In the Osa region to the south, convergence is orthogonal to the trench. Cocos-Caribbean relative motion is partitioned here, with $8 cm/yr on the Cocos-Panama block boundary (including a component of permanent shortening across the Fila Costeña fold and thrust belt) and $1 cm/yr on the Panama block-Caribbean boundary. The GPS data suggest that the Cocos plate-Panama block boundary is completely locked from $10-50 km depth. This large locked zone, as well as associated forearc and back-arc deformation, may be related to subduction of the shallow Cocos Ridge and/or younger lithosphere compared to Nicoya, with consequent higher coupling and compressive stress in the direction of plate convergence.
The Nicoya Peninsula in Costa Rica is one of the few places on Earth where the seismically active plate interface of a subduction zone is directly overlaid by land rather than ocean. At this plate interface, large megathrust earthquakes with magnitudes greater than 7 occur approximately every 50 years. Such quakes occurred in 1853, 1900 and 1950, so another large earthquake had been anticipated 1,2 . Land-based Global Positioning System 3,4 (GPS) and seismic 5-7 measurements revealed a region where the plate interface was locked and hence accumulated seismic strain that could be released in future earthquakes. On 5 September 2012, the longanticipated Nicoya earthquake occurred in the heart of the previously identified locked patch. Here we report observations of coseismic deformation from GPS and geomorphic data along the Nicoya Peninsula and show that the magnitude 7.6 Nicoya earthquake ruptured the lateral and down-dip extent of the previously locked region of the plate interface. We also identify a previously locked part of the plate interface, located immediately offshore, that may not have slipped during the 2012 earthquake, where monitoring should continue. By pairing observations of the spatial extent of interseismic locking and subsequent coseismic rupture, we demonstrate the use of detailed near-field geodetic investigations during the late interseismic period for identifying future earthquake potential.The interface between convergent plates produces most of the world's largest earthquakes, threatening local inhabitants and global populations through destructive shaking and tsunami generation, as demonstrated by the recent 2011 M w 9.0 Tohoku-Oki and 2004 M w 9.15 Sumatra-Andaman earthquakes and tsunami. Owing to the significant societal impacts, geoscientists endeavour to understand the driving and locking mechanisms controlling subduction zone seismicity. The shallow earthquakegenerating portion of the subduction interface, hereafter referred to as the megathrust, is difficult to characterize because it is relatively inaccessible, spans great lengths of continental margins and requires detailed near-field observations primarily in the marine environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.