This study examined the dynamic response of Spermatozoa DNA Fragmentation after sex selection in bulls using a MoFlo(®) SX (Beckman Coulter, Miami FL) spermatozoa sorter. The dynamic response of spermatozoa DNA fragmentation refers to the changing values of SDF, i.e., rate of SDF (rSDF), when analyzed periodically over a set incubation time at 37 °C. A dynamic assessment of SDF using non-sorted and sex-sorted spermatozoa samples during 72 h of incubation at 37 °C was performed. Results showed a reduced DNA longevity in sex-sorted frozen-thawed spermatozoa, with spermatozoa DNA damage appearing between 24 h and 48 h. The baseline SDF level was higher in conventional frozen-thawed than in sex-sorted frozen-thawed spermatozoa samples; while the reverse occurred for the rSDF. The afore-mentioned result produced a crossover point between both dynamic tendencies of SDF for sex-sorted versus conventional samples. We defined this crossover point as the Crossover Positioning Time (CPT) or the time (in hours) where both curves crossover after a period of spermatozoa incubation at 37 °C. The point at which the CPT occurs could be used as an indicator of the rSDF for individual bulls after X- and Y-chromosome bearing spermatozoa selection. CPT values produced a window of SDF ranging between 24 h and 48 h in the present experiment. It is proposed that higher values for CPT are indicative of bulls presenting chromatin that is more resistant to the external stressors affecting spermatozoa DNA after spermatozoa sorting.
Background:Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is a live attenuated vaccine mainly administered to newborns and used for over 100 years to prevent the disease caused by Mycobacterium tuberculosis (M. tb). This vaccine can induce immune response polarization towards a Th1 profile, which is desired for counteracting M. tb, other mycobacteria, and unrelated intracellular pathogens. The vaccine BCG has been used as a vector to express recombinant proteins and has been shown to protect against several diseases, particularly respiratory viruses. Methods: BCG was used to develop recombinant vaccines expressing either the Nucleoprotein from SARS-CoV-2 or Andes orthohantavirus. Mice were immunized with these vaccines with the aim of evaluating the safety and immunogenicity parameters. Results: Immunization with two doses of 1 × 108 CFU or one dose of 1 × 105 CFU of these BCGs was safe in mice. A statistically significant cellular immune response was induced by both formulations, characterized as the activation of CD4+ and CD8+ T cells. Stimulation with unrelated antigens resulted in increased expression of activation markers by T cells and secretion of IL-2 and IFN-γ, while increased secretion of IL-6 was found for both recombinant vaccines; all of these parameters related to a trained immunity profile. The humoral immune response elicited by both vaccines was modest, but further exposure to antigens could increase this response. Conclusions: The BCG vaccine is a promising platform for developing vaccines against different pathogens, inducing a marked antigen-specific immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.