An important objective of aquatic ecotoxicology is to determine the effects of toxic compounds in organisms that play a central role in aquatic communities where rotifers have a large impact on several important ecological processes. The contribution of the rotifers to secondary production in many aquatic communities is substantial as they are often the larger fraction of zooplankton biomass at certain times of the year. In addition to the importance of their ecological roles in aquatic communities, the rotifers are attractive organisms for ecotoxicological studies by its short life cycles and rapid reproduction, their small size, and little volumes needed for culture and toxicity assays. The main end points used in ecotoxicological studies are mortality, reproduction, behavior, and biomarkers. Such parameters are included in international regulations from all over the world, where different species are used to evaluate the effect of environmental samples or chemical compounds. The high diversity of rotifers is an important issue because it can modify their relative susceptibility to toxicants. Thus, more studies are needed to know the relations and mechanisms involved in clonal variation, sensitivity, and development, which can be all assessed by state-of-the-art procedures.
Microcystis is a bloom-forming, common cyanobacterium in urban lakes of Mexico City. To assess the presence of potentially cyanotoxin-producing Microcystis, molecular techniques were applied and acute toxicity bioassays were performed with Daphnia magna neonates exposed to cyanobacterial crude extracts. Toxigenic potential of isolated strains was inferred by amplifying the mcyA-Cd genes and their identity as Microcystis was confirmed through the 16S rDNA and phycocyanin operon amplification. Microcystins synthesized under culture conditions were quantified through ELISA. The acute toxicity bioassays revealed that mortality was independent from the cyanotoxin concentration in some strains; this suggests the presence of other metabolites (different from microcystins) that also exerted an important biological effect. Isolated strains had the mcyA-Cd gene and most of them produced variable amounts of microcystins in the culture conditions used, confirming their toxigenic potential. Results warn about possible toxic effect risks for aquatic biota, neighboring areas, visitors and users of these sites, due to the constant presence of these blooms in the studied water bodies.
In Aguascalientes, Mexico, there is a special concern about pesticides because of their intensive use on guava production areas, which are located in the vicinity of water reservoirs; thus, non-target organisms could be exposed. Thereafter, the aim of this work was to assess the effect of cypermethrin, Faena® (glyphosate), and malathion, which are the most used pesticides in Aguascalientes' guava production, on the indigenous freshwater species Alona guttata (cladoceran) and Lecane papuana (rotifer). Acute 48-h toxicity tests were carried out, and LC values were calculated. Then, five sublethal concentrations (1/80, 1/40, 1/20, 1/10, and 1/5 of the respective LC) were selected for the chronic assays: (a) intrinsic growth rate analysis in the rotifer and (b) partial life table analysis in the cladoceran. The results of the acute toxicity tests showed that A. guttata was more sensitive to malathion (LC = 5.26 × 10 mg/L) at concentrations found in natural environments with continuous application on guava fields, whereas L. papuana was more sensitive to Faena® (LC = 19.89 mg/L). The somatic growth of A. guttata was inhibited for the chronic exposure to cypermethrin. In addition, cypermethrin and Faena® seemed to exert endocrine disruptive effects on A. guttata. Moreover, malathion chronic exposure significantly decreased the survival of A. guttata. Moreover, L. papuana was affected chronically for the three pesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.