Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.
The growth of atomically thin MoS2 films is achieved by sulfurization of molybdenum oxide precursor films grown by atomic layer deposition. The quality features of the MoS2 films are engineered controlling the stoichiometry, morphology, and thickness of the precursors. The interface interaction between the precursor films and the substrates (SiO2 or sapphire) plays a key role in the MoS2 formation.
Spin-charge interconversion phenomena at the interface between magnetic materials and topological insulators (TIs) are attracting enormous interest in the research effort toward the development of fast and ultra-low power devices for future information and communication technology. A large spin-to-charge (S2C) conversion efficiency in Au/Co/Au/Sb 2 Te 3 /Si(111) heterostructures based on Sb 2 Te 3 TIs grown by metal-organic chemical vapor deposition on 4″ Si(111) substrates is reported. By conducting room temperature spin pumping ferromagnetic resonance, a 250% enhanced charge current due to spin pumping in the Sb 2 Te 3containing system is measured when compared to the reference Au/Co/Au/ Si(111). The corresponding inverse Edelstein effect length λ IEE ranges from 0.28 to 0.61 nm, depending on the adopted methodological analysis, with the upper value being so far the largest observed for the second generation of 3D chalcogenide-based TIs. These results open the path toward the use of chemical methods to produce TIs on large area Si substrates and characterized by highly performing S2C conversion, thus marking a milestone toward future technology-transfer.
Thin NiO films are grown at 300°C on Si (100) using atomic layer deposition. The dependence of annealing temperature on the optical properties of NiO films has been investigated using spectroscopic ellipsometry in the spectral region of 1.24–5.05eV. It is found that the refractive index and thickness of NiO films are affected by high temperature annealing. The optical band gap of the as-deposited thin NiO film is determined to be 3.8eV, which is almost independent of the annealing temperature. The indirect band gap of NiO film shifts toward lower photon energy with an increase in annealing temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.