In this paper we investigate the application of pseudo-transient-continuation (PTC) schemes for the numerical solution of semilinear elliptic partial differential equations, with possible singular perturbations. We will outline a residual reduction analysis within the framework of general Hilbert spaces, and, subsequently, employ the PTC-methodology in the context of finite element discretizations of semilinear boundary value problems. Our approach combines both a prediction-type PTC-method (for infinite dimensional problems) and an adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully adaptive PTC-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples.
The traditional Newton method for solving nonlinear operator equations in Banach spaces is discussed within the context of the continuous Newton method. This setting makes it possible to interpret the Newton method as a discrete dynamical system and thereby to cast it in the framework of an adaptive step size control procedure. In so doing, our goal is to reduce the chaotic behavior of the original method without losing its quadratic convergence property close to the roots. The performance of the modified scheme is illustrated with various examples from algebraic and differential equations.
In this paper we develop an adaptive procedure for the numerical solution of semilinear parabolic problems, with possible singular perturbations. Our approach combines a linearization technique using Newton's method with an adaptive discretization-which is based on a spatial finite element method and the backward Euler time stepping scheme-of the resulting sequence of linear problems. Upon deriving a robust a posteriori error analysis, we design a fully adaptive Newton-Galerkin time stepping algorithm. Numerical experiments underline the robustness and reliability of the proposed approach for various examples.2010 Mathematics Subject Classification. 49M15, 65M60.
In this work we present and discuss a possible globalization concept for Newton-type methods. We consider nonlinear problems f (x) = 0 in R n using the concepts from ordinary differential equations as a basis for the proposed numerical solution procedure. Thus, the starting point of our approach is within the framework of solving ordinary differential equations numerically. Accordingly, we are able to reformulate general Newton-type iteration schemes using an adaptive step size control procedure. In doing so, we derive and discuss a discrete adaptive solution scheme, thereby trying to mimic the underlying continuous problem numerically without losing the famous quadratic convergence regime of the classical Newton method in a vicinity of a regular solution. The derivation of the proposed adaptive iteration scheme relies on a simple orthogonal projection argument taking into account that, sufficiently close to regular solutions, the vector field corresponding to the Newton scheme is approximately linear. We test and exemplify our adaptive root-finding scheme using a few low-dimensional examples. Based on the presented examples, we finally show some performance data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.