In this paper, we develop the a posteriori error estimation of hp-version interior penalty discontinuous Galerkin discretizations of elliptic boundary-value problems. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The bounds are explicit in the local mesh sizes and approximation orders. A series of numerical experiments illustrate the performance of the proposed estimators within an automatic hp-adaptive refinement procedure.
We introduce and analyze hp-version discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary value problems in three dimensional polyhedral domains. In order to resolve possible corner-, edge-and corneredge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined towards the corresponding neighborhoods. Similarly, the local polynomial degrees are increased s-linearly and possibly anisotropically away from singularities. We design interior penalty hp-dG methods and prove that they are well-defined for problems with singular solutions and stable under the proposed hp-refinements, i.e., on σ-geometric anisotropic meshes of mapped hexahedra with anisotropic polynomial degree distributions of µ-bounded variation. We establish (abstract) error bounds that will allow us to prove exponential rates of convergence in the second part of this work.
In this paper we investigate the application of pseudo-transient-continuation (PTC) schemes for the numerical solution of semilinear elliptic partial differential equations, with possible singular perturbations. We will outline a residual reduction analysis within the framework of general Hilbert spaces, and, subsequently, employ the PTC-methodology in the context of finite element discretizations of semilinear boundary value problems. Our approach combines both a prediction-type PTC-method (for infinite dimensional problems) and an adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully adaptive PTC-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples.
Fixed point iterations are widely used for the analysis and numerical treatment of nonlinear problems. In many cases, such schemes can be interpreted as iterative local linearization methods, which, as will be shown, can be obtained by applying a suitable preconditioning operator to the original (nonlinear) equation. Based on this observation, we will derive a unified abstract framework which recovers some prominent iterative schemes. In particular, for Lipschitz continuous and strongly monotone operators, we derive a general convergence analysis. Furthermore, in order to solve nonlinear problems numerically, we propose a combination of the iterative linearization approach and the classical Galerkin discretization method, thereby giving rise to the so-called iterative linearization Galerkin (ILG) methodology. Moreover, still on an abstract level, based on two different elliptic reconstruction techniques, we derive a posteriori error estimates which separately take into account the discretization and linearization errors. Furthermore, we propose an adaptive algorithm, which provides an efficient interplay between these two effects. Finally, our abstract theory and the performance of the adaptive ILG approach are illustrated by means of a finite element discretization scheme for various examples of quasilinear stationary conservation laws.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.