We present a thorough study on the various impacts of polymer:nanoparticle ratios on morphology, charge generation and device performance in hybrid solar cells, comprising active layers consisting of a conjugated polymer and in situ prepared copper indium sulfide (CIS) nanoparticles. We conducted morphological studies through transmission electron microscopy and transient absorption measurements to study charge generation in absorber layers with polymer:nanoparticle weight ratios ranging from 1:3 to 1:15. These data are correlated to the characteristic parameters of the prepared solar cells. To gain a deeper understanding of our experimental findings, three-dimensional drift-diffusion-based simulations were performed. Based on elaborate descriptions of the contributions of polymer and nanoparticle phase to device performances, our results suggest that a polymer:CIS volume ratio of 1:2 (weight ratio 1:9) is necessary to obtain a balanced hole and electron percolation. Also at higher CIS loadings the photocurrent remains surprisingly high due to the contribution of the CIS phase to the charge carrier generation.
Electrode materials are primarily chosen based on their work function to suit the energy levels of the absorber materials. In this paper, we focus on the modification of aluminum cathodes with a thin silver interlayer (2 nm) in copper indium sulfide/poly[(2,7-silafluorene)-alt-(4,7-di-2thienyl-2,1,3-benzothiadiazole)] (PSiF-DBT) nanocomposite solar cells, which improves the fill factor compared to pure aluminum electrodes. A comprehensive structural investigation was performed by means of transmission electron microscopy and time-of-flight secondary ion mass spectrometry revealing the presence of silver nanoparticles in an aluminum oxide matrix between the absorber layer and the aluminum cathode. In combination with complementary optical investigations, the origin of the improvement is ascribed to a facilitated charge extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.