In this paper, we describe the synthesis of a series of novel substituted 4-aryl-6,7-methylenedioxyphthalazin-1(2H)-ones. The anticonvulsant activity of these compounds against audiogenic seizures was evaluated in DBA/2 mice after intraperitoneal (ip) injection. Most of these derivatives are more active than 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (1, GYKI 52466), a well-known noncompetitive AMPA receptor antagonist. As deduced by the rotarod test, all the compounds exhibit a toxicity lower than that of 1. Within the series of derivatives submitted to investigation, 4-(4-aminophenyl)-2-butylcarbamoyl-6,7-methylenedioxyphthalazin -1(2H)-one (21) proved to be the most active compound and is 11-fold more potent than 1 (i.e., ED50 3.25 micromol/kg for 21 versus ED50 35.8 micromol/kg for 1). When compared to 1, compound 21 as well as its analogue 4-(4-aminophenyl)-6,7-methylenedioxyphthalazin-1(2H)-one (16) show a longer lasting anticonvulsant activity. Compound 21 also effectively suppresses seizures induced in Swiss mice by maximal electroshock (MES) and pentylenetetrazole (PTZ). Furthermore, it antagonizes in vivo seizures induced by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA), 2-amino-3-(3-hydroxy-5-tert-butyl-isoxazol-4-yl)propionic acid (ATPA), and kainate (KA), and its anticonvulsant activity is reversed by pretreatment with aniracetam. Using the patch-clamp technique, the capability of derivatives 16 and 21 to antagonize KA-evoked currents in primary cultures of granule neurons was tested. They behaved as antagonists, but they proved to be less effective than 1 and 1-(4-aminophenyl)-3,4-dihydro-4-methyl-3-N-methylcarbamoyl-7,8-met hylenedioxy-5H-2,3-benzodiazepine (2, GYKI 53655) to reduce the KA-evoked currents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.