At Saint- Nicolas, in the Québec City Strait, tidal current sands of the Pleistocene-Holocene transition preserve an exceptional marine fossil fauna: 34 types of invertebrates in addition to the microfossils, three species of marine mammals, three species of seabirds and five species of fish, whose 14 C age varies between 10 060 and 9810 BP (δ 13 C = 0 ‰). These sands are overlain by tidalites which correspond to the last phase of the Champlain Sea, until ca. 9750 BP. The lithological, geochemical, and paleontological data gathered in the area suggest that sedimentation took place in an archipelago which was located at the entrance of the Champlain Sea and was subjected to tides that reached levels on the order of 5 to 10 metres. The strong currents of the rising tide favored the late occurrence of salt water influx in the area. The archipelago protected the sedimentary units from erosion during ebb tide as well as from later fluvial erosion resulting from glacioisostatic rebound. Faunal diversity is associated with high marine productivity which is tied to the mixing of fresh and salt waters. The food web was composed of molluscs which were abundant at low tide, of fishes, walrus, seals, and birds that nested on the small rocky islands. This sedimentary and ecological system implies a stabilization of the relative sea level attributed to the early Holocene eustatic rise. The dissolved inorganic carbon effect in the Champlain Sea is assessed on the basis of a comparison of 14 C ages obtained from marine shells and wood. Ages from marine shells (δ 13 C= 0 ‰) are at least 350 y. older than stratigraphically equivalent wood ages (δ 13 C=25 ‰).À Saint-Nicolas, dans le détroit de Québec, des sables de courants de marée de la transition Pléistocène-Holocène contiennent une faune marine fossile exceptionnelle : 34 types d'invertébrés en plus des microfossiles, 3 de mammifères, 3 d'oiseaux et 5 de poissons, d'âge au 14 C compris entre 10 060 et 9810 BP (δ 13 C = 0 ‰). Ils sont recouverts par des tidalites qui marquent la phase ultime de la Mer de Champlain, jusque vers 9750 BP. L'ensemble des données lithologiques, géochimiques et paléontologiques évoque une sédimentation dans un archipel situé à l'entrée de la Mer de Champlain, soumis à des marées de l'ordre de 5 à 10 m d'amplitude. Les forts courants de marée montante ont favorisé le maintien tardif d'apports d'eaux salées. L'archipel a protégé les unités de l'érosion pendant le reflux des marées ainsi que de l'érosion fluviatile ultérieure liée au relèvement glacio-isostatique. La diversité faunique est associée à une forte productivité marine, liée au mélange des eaux douces et salées. La chaîne alimentaire allait de mollusques abondants à marée basse à des poissons, au morse, à des phoques et à des oiseaux qui nidifiaient sur les îlots rocheux. Le maintien de ce système sédimentaire et écologique implique une stabilisation du niveau marin relatif attribuée à la remontée...
The fossil record of polypoid cnidarians includes a number of taxa that were incorrectly identified as either tubiculous worms or plants. The holotype of the putative alga Euzebiola clarkei (Ponta Grossa Formation, Lower Devonian, Brazil), originally described under the name Serpulites sica , is re-described and re-figured as a species of Sphenothallus, a medusozoan cnidarian. Unlike Sphenothallus from other localities, the black, organic-walled Ponta Grossa specimen consists of a single parent tube that is confluent with the apical ends of at least 18 daughter tubes. The pattern of arrangement of the daughter tubes, which are arrayed in single file along the exposed face and the two thickened margins of the parent tube, partly resembles the whorl-like pattern of arrangement of colonial polyps of certain scyphozoan cnidarians. For these reasons, the Ponta Grossa Formation material figures prominently in the argument that Sphenothallus was a medusozoan cnidarian capable (in at least one species) of clonal budding.
Cyclocystoids are a poorly known, rare, extinct class of bi-facially flattened, disc shaped echinoderms, ranging from the Middle Ordovician to the Early Carboniferous. Articulated cyclocystoids are relatively common in the Ordovician but are rarer in younger strata. Here we describe Perforocycloides nathaliae new genus and species, from the early Silurian of Anticosti Island, Québec, Canada, the first articulated cyclocystoid from the Silurian of North America. This taxon is distinguished from other cyclocystoids by the number of variably sized marginal ossicles, the lack of interseptal plates, and the novelty of pores located in the distal part of the sutures between adjacent marginals on the dorsal surface. These dorsal intermarginal sutural pores led to canals which penetrated the contiguous area of the lateral surface of the marginals and emerged on the ventral surface between the cupules of adjacent marginals. These dorsal intermarginal sutural pores/canals appear to be unique to Perforocycloides and whilst their function is speculative, they provided some form of communication between the dorsal disc and the distal side of the ventral marginals/cupules. Perforocycloides most closely resembles the Ordovician-Silurian genus Zygocycloides, suggesting that this genus may have diversified more widely during the Silurian than previously reported. A review of global Silurian cyclocystoid distribution suggests taxa were geographically confined and that greatest diversity appears to have been located within Baltica. However, it also demonstrates our current limited knowledge. No specimens have been recorded from Gondwana (e.g. Africa, Australia, South America), Siberia, and North and South China, nor are any specimens known confidently anywhere from Přidolí strata.
End-Ordovician extinctions had a profound effect on shallow-water benthic communities, including the Crinoidea. Further, recovery after the extinctions resulted in a macroevolutionary turnover in crinoid faunas. Anticosti Island is the most complete Ordovician-Silurian boundary section recording shallow-water habitats. Both new taxa and changes in Anticosti Island stratigraphic nomenclature are addressed herein. New taxa include Becsciecrinus groulxi n. sp., Bucucrinus isotaloi n. sp., Jovacrinus clarki n. sp., Plicodendrocrinus petryki n. sp., Plicodendrocrinus martini n. sp., Thalamocrinus daoustae n. sp., and Lateranicrinus saintlaurenti n. gen. n. sp. The status of Xenocrinus rubus as a boundary-crossing taxon is confirmed, range extensions of several taxa are documented, and the distribution of crinoids with the revised stratigraphic nomenclature is documented.UUID: http://zoobank.org/19613a44-ec69-47d7-88ab-fcf88ba771f0.
A bear third metatarsal was discovered in Champlain Sea deposits at the Saint-Nicolas site, Quebec. It is identified morphologically probably as a brown bear (Ursus arctos) based on the combination of morphology and ancient DNA. It is the first evidence of bears from Champlain Sea deposits. This bone was radiocarbon dated by accelerator mass spectrometry (AMS) to 9880 ± 35 BP (radiocarbon years BP, taken as 1950) -close to the end of the Champlain Sea phase in eastern North America. The specimen is considered in relation to other North American Quaternary brown bear remains, the dispersal history of the species, and the known Champlain Sea fauna from Saint-Nicolas, as well as stratigraphy at the site and paleoenvironment. Four major conclusions summarize the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.