Coenzyme Q10 (CoQ) is a small lipophilic molecule critical for the transport of electrons from complexes I and II to complex III in the mitochondrial respiratory chain. CoQ deficiency is a rare human genetic condition that has been associated with a variety of clinical phenotypes. With the aim of elucidating how CoQ deficiency affects an organism, we have investigated the pathophysiologic processes present within fibroblasts derived from 4 patients with CoQ deficiency. Assays of cultured fibroblasts revealed decreased activities of complex II+III, complex III, and complex IV, reduced expression of mitochondrial proteins involved in oxidative phosphorylation, decreased mitochondrial membrane potential, increased production of reactive oxygen species (ROS), activation of mitochondrial permeability transition (MPT), and reduced growth rates. These abnormalities were partially restored by CoQ supplementation. Moreover, we demonstrate that CoQ deficient fibroblasts exhibited increased levels of lysosomal markers (beta-galactosidase, cathepsin, LC3, and Lyso Tracker), and enhanced expression of autophagic genes at both transcriptional and translational levels, indicating the presence of autophagy. Electron microscopy studies confirmed a massive degradation of the altered mitochondria by mitophagy. Autophagy in CoQ deficient fibroblasts was abolished by antioxidants or cyclosporin treatments suggesting that both ROS and MPT participate in this process. Furthermore, prevention of autophagy in CoQ deficient fibroblasts by 3-methyl adenine or wortmannin, as well as the induction of CoQ deficiency in cells lacking autophagy (by means of genetic knockout of the Atg5 gene in mouse embryonic fibroblasts) resulted in apoptotic cell death, suggesting a protective role of autophagy in CoQ deficiency.
IntroductionFibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of fibromyalgia. However, it is still not clear whether oxidative stress is the cause or the effect of the abnormalities documented in fibromyalgia. Furthermore, the role of mitochondria in the redox imbalance reported in fibromyalgia also is controversial. We undertook this study to investigate the role of mitochondrial dysfunction, oxidative stress, and mitophagy in fibromyalgia.MethodsWe studied 20 patients (2 male, 18 female patients) from the database of the Sevillian Fibromyalgia Association and 10 healthy controls. We evaluated mitochondrial function in blood mononuclear cells from fibromyalgia patients measuring, coenzyme Q10 levels with high-performance liquid chromatography (HPLC), and mitochondrial membrane potential with flow cytometry. Oxidative stress was determined by measuring mitochondrial superoxide production with MitoSOX™ and lipid peroxidation in blood mononuclear cells and plasma from fibromyalgia patients. Autophagy activation was evaluated by quantifying the fluorescence intensity of LysoTracker™ Red staining of blood mononuclear cells. Mitophagy was confirmed by measuring citrate synthase activity and electron microscopy examination of blood mononuclear cells.ResultsWe found reduced levels of coenzyme Q10, decreased mitochondrial membrane potential, increased levels of mitochondrial superoxide in blood mononuclear cells, and increased levels of lipid peroxidation in both blood mononuclear cells and plasma from fibromyalgia patients. Mitochondrial dysfunction was also associated with increased expression of autophagic genes and the elimination of dysfunctional mitochondria with mitophagy.ConclusionsThese findings may support the role of oxidative stress and mitophagy in the pathophysiology of fibromyalgia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.