Neurotrophins protect neurons against glutamate excitotoxicity, but the signaling mechanisms have not been fully elucidated. We studied the role of the phosphatidylinositol 3-kinase (PI3-K) and Ras/mitogen-activated protein kinase (MAPK) pathways in the protection of cultured hippocampal neurons from glutamate induced apoptotic cell death, characterized by nuclear condensation and activation of caspase-3-like enzymes. Pre-incubation with the neurotrophin brain-derived neurotrophic factor (BDNF), for 24 h, reduced glutamate-evoked apoptotic morphology and caspase-3-like activity, and transiently increased the activity of the PI3-K and of the Ras/MAPK pathways. Inhibition of the PI3-K and of the Ras/MAPK signaling pathways abrogated the protective effect of BDNF against glutamate-induced neuronal death and similar effects were observed upon inhibition of protein synthesis. Moreover, incubation of hippocampal neurons with BDNF, for 24 h, increased Bcl-2 protein levels. The results indicate that the protective effect of BDNF in hippocampal neurons against glutamate toxicity is mediated by the PI3-K and the Ras/MAPK signaling pathways, and involves a longterm change in protein synthesis.
IntroductionThe ability to self-renew, be easily expanded in vitro and differentiate into different mesenchymal tissues, render mesenchymal stem cells (MSCs) an attractive therapeutic method for degenerative diseases. The subsequent discovery of their immunosuppressive ability encouraged clinical trials in graft-versus-host disease and auto-immune diseases. Despite sharing several immunophenotypic characteristics and functional capabilities, the differences between MSCs arising from different tissues are still unclear and the published data are conflicting.MethodsHere, we evaluate the influence of human MSCs derived from umbilical cord matrix (UCM), bone marrow (BM) and adipose tissue (AT), co-cultured with phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (MNC), on T, B and natural killer (NK) cell activation; T and B cells’ ability to acquire lymphoblast characteristics; mRNA expression of interleukin-2 (IL-2), forkhead box P3 (FoxP3), T-bet and GATA binding protein 3 (GATA3), on purified T cells, and tumor necrosis factor-alpha (TNF-α), perforin and granzyme B on purified NK cells.ResultsMSCs derived from all three tissues were able to prevent CD4+ and CD8+ T cell activation and acquisition of lymphoblast characteristics and CD56dim NK cell activation, wherein AT-MSCs showed a stronger inhibitory effect. Moreover, AT-MSCs blocked the T cell activation process in an earlier phase than BM- or UCM-MSCs, yielding a greater proportion of T cells in the non-activated state. Concerning B cells and CD56bright NK cells, UCM-MSCs did not influence either their activation kinetics or PHA-induced lymphoblast characteristics, conversely to BM- and AT-MSCs which displayed an inhibitory effect. Besides, when co-cultured with PHA-stimulated MNC, MSCs seem to promote Treg and Th1 polarization, estimated by the increased expression of FoxP3 and T-bet mRNA within purified activated T cells, and to reduce TNF-α and perforin production by activated NK cells.ConclusionsOverall, UCM-, BM- and AT-derived MSCs hamper T cell, B cell and NK cell-mediated immune response by preventing their acquisition of lymphoblast characteristics, activation and changing the expression profile of proteins with an important role in immune function, except UCM-MSCs showed no inhibitory effect on B cells under these experimental conditions. Despite the similarities between the three types of MSCs evaluated, we detect important differences that should be taken into account when choosing the MSC source for research or therapeutic purposes.
Mature oligodendrocytes (MOLs) show transcriptional heterogeneity, the functional consequences of which are unclear. MOL heterogeneity might correlate with the local environment or their interactions with different neuron types. Here, we show that distinct MOL populations have spatial preference in the mammalian central nervous system (CNS). We found that MOL type 2 (MOL2) is enriched in the spinal cord when compared to the brain, while MOL types 5 and 6 (MOL5/6) increase their contribution to the OL lineage with age in all analyzed regions. MOL2 and MOL5/6 also have distinct spatial preference in the spinal cord regions where motor and sensory tracts run. OL progenitor cells (OPCs) are not specified into distinct MOL populations during development, excluding a major contribution of OPC intrinsic mechanisms determining MOL heterogeneity. In disease, MOL2 and MOL5/6 present different susceptibility during the chronic phase following traumatic spinal cord injury. Our results demonstrate that the distinct MOL populations have different spatial preference and different responses to disease.
IntroductionIt is hypothesized that administration of stromal/stem cells isolated from the adipose tissue (ASCs) and umbilical cord (HUCPVCs) can ameliorate the injured central nervous system (CNS). It is still not clear, however, whether they have similar or opposite effects on primary cultures of neuronal populations. The objective of the present work was to determine if ASCs and HUCPVCs preferentially act, or not, on specific cell populations within the CNS.MethodsPrimary cultures of hippocampal neurons were exposed to ASCs and HUCPVCs conditioned media (CM) (obtained 24, 48, 72 and 96 hours after three days of culture) for one week.ResultsCell viability experiments (MTS (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H tetrazolium) test) revealed that CM obtained from both cell populations at all time points did not cause any deleterious effects on neuronal cells. In fact, it was determined that whenever the ASCs CM were supplemented with basic fibroblast growth factor (bFGF) and B27, there was a significant increase in the metabolic viability and neuronal cell density of the cultures. On the other hand, in the absence of CM supplementation, it was the HUCPVCs secretome that had the highest impact on the metabolic viability and cell density. In an attempt to unveil which factors could be involved in the observed effects, a screening for the presence of bFGF, nerve growth factor (NGF), stem cell factor (SCF), hepatocyte growth factors (HGF) and vascular endothelial growth factor (VEGF) in the CM was performed. Results revealed the presence of all these factors in ASCs CM, except bFGF; in contrast, in HUCPVCs CM it was only possible to detect robust NGF expression.ConclusionsOverall, the results confirm important differences on the secretome of ASCs and HUCPVCs, which lead to distinct effects on the metabolic viability and neuronal cell densities in primary cultures of hippocampal neurons; however, the factor(s) that promote the stronger effect of the HUCPVCs CM in neuronal survival is(are) still to be identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.