The motivation of this paper is to identify possible directions for future developments in the battery system structure for BEVs to help choosing the right cell for a system. A standard battery system that powers electrified vehicles is composed of many individual battery cells, modules and forms a system. Each of these levels have a natural tendency to have a decreased energy density and specific energy compared to their predecessor. This however, is an important factor for the size of the battery system and ultimately, cost and range of the electric vehicle. This study investigated the trends of 25 commercially available BEVs of the years 2010 to 2019 regarding their change in energy density and specific energy of from cell to module to system. Systems are improving. However, specific energy is improving more than energy density. More room for improvements is thus to be gained in packaging optimization and could be a next step for further battery system development. Other aspects looked at are cell types and sizes. There, a trend to larger and prismatic cells could be identified.
Battery cell production is one of the key industries for electric mobility. To become more competitive and economic, battery cell production requires maximum efficiency in every process step. An efficient production can be achieved by a low rejection rate during switch-on and operating processes. For all process steps of battery cell production relative rejection rates and absolute scrap amounts are analyzed. Herein, it is aimed to find out to what extent existing quality inspection systems can eliminate battery cell production rejects, whether there are deficits in their application and if approaches of Industry 4.0 can offer solutions. The results are that coating is the process step with the highest reject and data-driven methods are suitable tools to reduce the rejection rate in the production of current and future battery cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.