Non-aqueous metal-oxygen batteries depend critically on the reversible formation/decomposition of metal oxides on cycling. Irreversible parasitic reactions cause poor rechargeability, efficiency, and cycle life and have predominantly been ascribed to the reactivity of reduced oxygen species with cell components. These species, however, cannot fully explain the side reactions. Here we show that singlet oxygen forms at the cathode of a lithium-oxygen cell during discharge and from the onset of charge, and accounts for the majority of parasitic reaction products. The amount increases during discharge, early stages of charge, and charging at higher voltages, and is enhanced by the presence of trace water. Superoxide and peroxide appear to be involved in singlet oxygen generation. Singlet oxygen traps and quenchers can reduce parasitic reactions effectively. Awareness of the highly reactive singlet oxygen in non-aqueous metal-oxygen batteries gives a rationale for future research towards achieving highly reversible cell operation.
In this contribution a convenient synthetic method to obtain tetraacylgermanes Ge[C(O)R] (R=mesityl (1 a), phenyl (1 b)), a previously unknown class of highly efficient Ge-based photoinitiators, is described. Tetraacylgermanes are easily accessible via a one-pot synthetic protocol in >85 % yield, as confirmed by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The efficiency of 1 a,b as photoinitiators is demonstrated in photobleaching (UV/Vis), time-resolved EPR (CIDEP), and NMR/CIDNP investigations as well as by photo-DSC studies. Remarkably, the tetraacylgermanes exceed the performance of currently known long-wavelength visible-light photoinitiators for free-radical polymerization.
Acylgermanes have been subject of great interest recently because of their low toxicity and the applicability as sources for germanium-centered radicals for visible-light induced free radical polymerization processes. We report on a novel and versatile method for the synthesis of tetraacylgermanes allowing the preparation of various tetra-substituted acylgermanes 1a−m. The formation of these derivatives was confirmed by NMR spectroscopy, mass spectrometry, and X-ray crystallography. UV−vis absorption spectra of the prepared compounds reveal absorption in the visible region. This transition was assigned by TD-DFT calculations. It enabled a general screening of the influence of different substitution patterns on the absorption properties. The radical formation upon irradiation was confirmed by TR-EPR spectroscopy.
Regioselective 2′-O- and 4′-O-β-d-glucosylation of dihydrochalcones was achieved through glycosyltransferase cascade reactions using glucosyl donor substrate supply from sucrose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.