Retinol dehydrogenase 11 (RDH11) has been postulated to be anchored to membranes by means of its N-terminal segment in retinal pigment epithelial (RPE) cells where it participates to the visual cycle. The analysis of the primary sequence of RDH11 revealed that its N-terminal hydrophobic segment could be involved in the anchoring of this enzyme to membranes. However, no information is yet available on the properties of this N-terminal segment to support this role. The secondary structure and membrane binding of two N-terminal peptides of RDH11 with different lengths have thus been investigated to provide this information. Online tools allowed predicting an α-helical secondary structure for both peptides. Infrared spectroscopy and circular dichroism have shown that the α-helix of the Long-peptide (35 amino acids) is longer and more rigid than that of the Short-peptide (25 amino acids) regardless of the type of solvent. Langmuir monolayers have been used as a model membrane to study lipid-peptide interactions. Values of maximum insertion pressure and synergy suggested a preferential binding of the Long-peptide to lipids with a phosphoethanolamine polar head group, which are abundant in the RPE. Furthermore, infrared spectroscopy in monolayers has shown that the α-helical structure of the Long-peptide is more stable in the presence of saturated phospholipids whereas the structure of the Short-peptide is mainly disordered. Altogether, the present data demonstrate that the α-helical hydrophobic core of the N-terminal segment of RDH11 displays properties typical of transmembrane domains, in agreement with its postulated role in the membrane anchoring of this protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.