This study investigates the conversion of benzene in a packed bed containing fine char particles. Benzene and steam were simultaneously supplied to a tubular ceramic reactor that was heated electrically. Fragmented char particles were suspended and continuously supplied via a separate supply line. A packed bed of crushed alumina balls was positioned in the reactor to retain the char particles. The benzene conversion in the hot char bed was investigated by varying the bed temperature (900−1100 °C), steam concentration (0−27 vol %), and char concentration (5−50 g Nm −3 ). The highest conversions achieved in the experiments were approximately 75%. At comparable char concentrations, similar benzene conversions occurred at 900 and 1000 °C. Increasing the temperature to 1100 °C or increasing the steam concentration reduced the benzene conversion. The results indicate that the reduced conversion was due to enhanced char gasification reactions at elevated temperatures and steam concentrations and thus to reduced char mass in the packed bed.
The effects of varying fuel mixtures and using a lime additive were studied in a 125-MW th circulating fluidized bed boiler. A high-temperature aerosol measurement method using a hot-dilution probe was used to characterize the particles and condensing inorganic vapors upstream from the superheater. The particle size distributions of the extracted samples indicate that when high-sulfur rubber waste, waste wood, and forest fuel were cocombusted, the hot flue gas contained no substantial amount of particulate matter in the fine (<0.3 μm) particle size range, although the SO 2 concentration exceeded 70 ppm. Only a nucleation mode was observed, which was presumably formed from inorganic vapors that condensed in the sampling probe. The size-segregated elemental analysis of the extracted samples indicated that when lime was added, the nucleation mode mainly comprised condensed alkali chlorides, while the sulfates dominated the mode when no lime was added. The presumed explanation for the sulfates in the nucleation mode was the sulfation of the alkali chlorides inside the sampling system. When only the wood fuels and no rubber fuel were cocombusted, the SO 2 concentration in the gas was approximately 5 ppm. In this case, an alkali sulfate particle mode formed at approximately 70 nm in the hot flue gas. In addition, vapors of alkali chlorides and lead formed particulate matter inside the sampling probe when using low dilution ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.