Self-adaptive vibration energy harvesting systems vary their resonance frequency automatically to better exploit changing environmental conditions. The energy required for the adjustment is taken from the energy storage of the harvester module. The energy gained by an adjustment step has to exceed the energy expended on it to justify the adjustment. A smart self-adaptive system takes this into account and operates in a manner that maximizes the energy output. This paper presents a theory for the optimal operation of a vibration energy harvester with a passive resonance-frequency adjustment mechanism (one that only requires energy for the adjustment steps proper, but not during the hold phases between the steps). Several vibration scenarios are considered to derive a general guideline. It is shown that there exist conditions under which a narrowing of the adjustment bandwidth improves the system characteristics. The theory is applied to a self-adaptive energy harvesting system based on electromagnetic transduction with narrowband resonators. It is demonstrated that the novel optimum mode of operation increases the energy output by a factor of 3.6.
Self-adaptive vibration energy harvesters convert the kinetic energy from vibration sources into electrical energy and continuously adapt their resonance frequency to the vibration frequency. Only when the two frequencies match can the system harvest energy efficiently. The harvesting of vibration sources with a time-variant frequency therefore requires self-adaptive vibration harvesting systems without human intervention. This work presents a self-adaptive energy harvesting system that works completely self-sufficiently. Using magnetic forces, the axial load on a bending beam is changed and thus the resonance frequency is set. The system achieves a relative tuning range of 23% at a center frequency of 36.4 Hz. Within this range, the resonance frequency of the harvester can be set continuously and precisely. With a novel optimized method for frequency measurement and with customized electronics, the system only needs 22 µW to monitor the external vibration frequency and is therefore also suitable for environments with low vibration amplitudes. The system was verified on a vibrational test bench and can easily be tailored to a specific vibration source.
Vibration energy harvesters transform environmental vibration energy into usable electrical energy. The transformation is only possible because of a coupling between the mechanical part of the energy harvester and the electric circuit. This paper compares several measurement methods to determine the electromagnetic coupling coefficient. These methods are applied to various implementations of an energy harvester and the results are compared with one another and with simulation data by analyzing the magnetic flux. The average deviation between the measurement methods and the simulation data in our study was 5%. This good agreement validates the methods. Based on this, we recommend determination of the coupling coefficient and the optimum load resistance for maximum power harvesting on the basis of simulations and the open circuit method, because this procedure leads to the shortest measurement times.
Abstract. The main and upper stages of heavy lift launchers for space applications are often fuelled by cryogenic liquids. In order to enable the re-ignition of a cryogenic upper stage for orbital changes, it is crucial to study the behaviour of these fluids in microgravity. As gaseous bubbles entering the fuel lines of the engine can cause the destruction of the engine, these bubbles are a risk for the functionality of the re-ignition mode. To measure an evolving gaseous phase and its volume, a capacitive measurement system for two-phase mixtures was realised. Its electrodes are arranged in such a way that phase changes inside a vessel can be detected without parasitic heating under cryogenic conditions. Two cases have been investigated: a fill-level measurement involving a large gas bubble above a homogenous liquid on the one hand, and the identification of a bubble stream inside a liquid on the other hand. The system concept was tested in a cryogenic environment allowing the controlled generation of bubble streams inside liquid nitrogen and of a contiguous gaseous volume above the liquid. The characteristics of the measurable capacitances of different pairs of electrodes were experimentally determined and compared with finite-element simulations (Ansys). In addition, the electrical flux density was computed to corroborate the simulated capacitance curves with theoretical statements. The experimental findings closely agree with the simulated results if possible disturbances due to the characteristics of the capacitance measurement hardware are properly taken into account. Thus, by measuring various capacitances, it was possible to determine the level up to which a receptacle inside a liquid-nitrogen tank was filled with liquid (the space above the liquid being taken up by gaseous nitrogen), to identify the existence of a bubble stream in the liquid nitrogen and to demonstrate that the capacitance measurement results enable one to differentiate between the two cases.
ZusammenfassungDie Ober- und Hauptstufen von Trägerraketen werden oftmals mit kryogenen Flüssigkeiten betrieben. Im Besonderen ist es für eine Zündung des Triebwerkes in der Schwerelosigkeit wichtig, das
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.