Cardiovascular diseases are the leading cause of death worldwide. Despite preventive efforts, early detection of atherosclerosis, the common pathophysiological mechanism underlying cardiovascular diseases remains elusive, and overt coronary artery disease or myocardial infarction is often the first clinical manifestation. Nanoparticles represent a novel strategy for prevention, diagnosis, and treatment of atherosclerosis, and new multifunctional nanoparticles with combined diagnostic and therapeutic capacities hold the promise for theranostic approaches to this disease. This review focuses on the development of nanosystems for therapy and diagnosis of subclinical atherosclerosis, coronary artery disease, and myocardial infarction and the evolution of nanosystems as theranostic tools. We also discuss the use of nanoparticles in noninvasive imaging, targeted drug delivery, photothermal therapies together with the challenges faced by nanosystems during clinical translation.
Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ever-changing metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca(2+) uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca(2+) uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest that control of mitochondrial Ca(2+) uptake by mitochondrial morphology is a key event for insulin-induced glucose uptake.
Close contacts between endoplasmic reticulum and mitochondria enable reciprocal Ca exchange, a key mechanism in the regulation of mitochondrial bioenergetics. During the early phase of endoplasmic reticulum stress, this inter-organellar communication increases as an adaptive mechanism to ensure cell survival. The signalling pathways governing this response, however, have not been characterized. Here we show that caveolin-1 localizes to the endoplasmic reticulum-mitochondria interface, where it impairs the remodelling of endoplasmic reticulum-mitochondria contacts, quenching Ca transfer and rendering mitochondrial bioenergetics unresponsive to endoplasmic reticulum stress. Protein kinase A, in contrast, promotes endoplasmic reticulum and mitochondria remodelling and communication during endoplasmic reticulum stress to promote organelle dynamics and Ca transfer as well as enhance mitochondrial bioenergetics during the adaptive response. Importantly, caveolin-1 expression reduces protein kinase A signalling, as evidenced by impaired phosphorylation and alterations in organelle distribution of the GTPase dynamin-related protein 1, thereby enhancing cell death in response to endoplasmic reticulum stress. In conclusion, caveolin-1 precludes stress-induced protein kinase A-dependent remodelling of endoplasmic reticulum-mitochondria communication.
Diabetic cardiomyopathy (DCM) is a common consequence of longstanding type 2 diabetes mellitus (T2DM) and encompasses structural, morphological, functional, and metabolic abnormalities in the heart. Myocardial energy metabolism depends on mitochondria, which must generate sufficient ATP to meet the high energy demands of the myocardium. Dysfunctional mitochondria are involved in the pathophysiology of diabetic heart disease. A large body of evidence implicates myocardial insulin resistance in the pathogenesis of DCM. Recent studies show that insulin signaling influences myocardial energy metabolism by impacting cardiomyocyte mitochondrial dynamics and function under physiological conditions. However, comprehensive understanding of molecular mechanisms linking insulin signaling and changes in the architecture of the mitochondrial network in diabetic cardiomyopathy is lacking. This review summarizes our current understanding of how defective insulin signaling impacts cardiac function in diabetic cardiomyopathy and discusses the potential role of mitochondrial dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.