There were errors published in J. Cell Sci. 124, 2143Sci. 124, -2152 In the section given below, PtdIns(3,4,5)P 3 was on four occasions incorrectly printed instead of the correct Ins(1,4,5)P 3 .We apologise for this mistake. Increased mitochondrial Ca2+ drives the adaptive metabolic boost observed during early phases of ER stress Increases in mitochondrial respiration and ATP production are often consequences of increases in mitochondrial Ca 2+ (Green and Wang, 2010). In order to determine whether early phases of ER stress induced by tunicamycin increased mitochondrial Ca 2+ , we treated cells expressing cytosolic or mitochondrial aequorins with histamine [which evokes Ins(1,4,5)P 3 -dependent Ca2+ release] and compared their mitochondrial Ca 2+ uptake. We observed that histamine led to a mitochondrial Ca 2+ uptake that was significantly higher in tunicamycinpretreated cells (P<0.05; 4 hours) than in untreated cells (Fig. 6A). Cytosolic Ca 2+ increased similarly in tunicamycin-treated and untreated cells (Fig. 6B). These results indicate that the differences in mitochondrial Ca 2+ levels are not due to altered Ca 2+ release mediated by the Ins(1,4,5)P 3 receptor but to an enhanced mitochondrial Ca 2+ uptake, presumably due to the increased apposition of ER and mitochondrial Ca 2+ channels. By using a different dye, Fura-2, we monitored the peak cytosolic Ca 2+ levels after thapsigargin addition, reflecting the kinetics of Ca 2+ release after sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase (SERCA) inhibition. After 4 hours of tunicamycin treatment, the thapsigargin-induced Ca 2+ peak was increased, and it was further elevated by inhibition of mitochondrial Ca 2+ uptake using Ru360 (Fig. 6C). These results suggest that, besides the Ins(1,4,5)P 3 -receptor-mediated direct Ca 2+ transfer from the ER to neighboring mitochondria, an additional phenomenon associated with the early phases of ER stress involves Ca 2+ leak from the ER, also resulting in mitochondrial Ca 2+ uptake. Indeed, no mitochondrial Ca 2+ uptake following the thapsigargin-induced Ca 2+ leak was observed in Mfn2-knockout cells (Fig. 6D), which is reflected by the lack of effect of Ru360. This result further indicates that juxtaposition of mitochondria with the ER is necessary for the mitochondrial Ca 2+ uptake evoked by Ca 2+ leak during early phases of ER stress.Finally, to test whether mitochondrial Ca 2+ levels control the metabolic mitochondrial boost, we measured oxygen consumption rates resulting from OXPHOS in the presence of the Ins(1,4,5)P 3 receptor inhibitor xestospongin B or the mitochondrial Ca 2+ uptake inhibitor RuRed. We observed that both xestospongin B and RuRed decreased the rate of oxygen consumption after tunicamycin treatment (Fig. 7A,B), which confirms that increased mitochondrial Ca 2+ uptake, resulting from ER-mitochondrial coupling, is necessary for the metabolic response observed during early phases of ER stress. Therefore, in order to evaluate whether the early metabolic boost forms part of an adaptive response triggere...
. Her research centres on calcium-regulated signal transduction pathways with a focus on the protein phosphatase calcineurin. Sergio Lavandero is Professor at the University of Chile and Adjunct Professor in Internal Medicine (Division of Cardiology) at UT Southwestern Medical Centre, Dallas. Currently, he is Director and PI of the Advanced Centre for Chronic Diseases. He has a long-standing interest in the molecular mechanisms involved in the genesis and progression of cardiovascular and metabolic diseases. Abstract Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. 'Mitochondrial dynamics' , the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia-reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases. Abstract figure legendMitochondria play an essential role in maintaining optimal performance of the heart. Mitochondrial dynamics (processes of fusion and fission, mitochondrial biogenesis and mitophagy) determine mitochondrial morphology, quality and abundance. All these processes participate in the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia-reperfusion, cardiac hypertrophy and decompensated heart failure.Abbreviations m , mitochondrial membrane potential; DRP1, dynamin-related protein 1; FIS1, mitochondrial fission 1 protein; I/R, ischaemia/reperfusion; KO, ...
The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of reestablishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.