Purpose The addition of immunotherapy, including a combination of anti-GD2 monoclonal antibody (mAb), ch14.18, and cytokines, improves outcome for patients with high-risk neuroblastoma. However, this therapy is limited by ch14.18-related toxicities that may be partially mediated by complement activation. We report the results of a phase I trial to determine the maximum-tolerated dose (MTD), safety profile, and pharmacokinetics of hu14.18K322A, a humanized anti-GD2 mAb with a single point mutation (K322A) that reduces complement-dependent lysis. Patients and Methods Eligible patients with refractory or recurrent neuroblastoma received escalating doses of hu14.18K322A ranging from 2 to 70 mg/m2 per day for 4 consecutive days every 28 days (one course). Results Thirty-eight patients (23 males; median age, 7.2 years) received a median of two courses (range, one to 15). Dose-limiting grade 3 or 4 toxicities occurred in four of 36 evaluable patients and were characterized by cough, asthenia, sensory neuropathy, anorexia, serum sickness, and hypertensive encephalopathy. The most common non–dose-limiting grade 3 or 4 toxicities during course one were pain (68%) and fever (21%). Six of 31 patients evaluable for response by iodine-123 metaiodobenzylguanidine score had objective responses (four complete responses; two partial responses). The first-course pharmacokinetics of hu14.18K322A were best described by a two-compartment linear model. Median hu14.18K322A α (initial phase) and β (terminal phase) half-lives were 1.74 and 21.1 days, respectively. Conclusion The MTD, and recommended phase II dose, of hu14.18K322A is 60 mg/m2 per day for 4 days. Adverse effects, predominately pain, were manageable and improved with subsequent courses.
Monoclonal antibodies against GD2 ganglioside, such as ch14.18, the human–mouse chimeric antibody, have been shown to be effective for the treatment of neuroblastoma. However, treatment is associated with generalized, relatively opiate-resistant pain. We investigated if a point mutation in ch14.18 antibody (hu14.18K332A) to limit complement-dependent cytotoxicity (CDC) would ameliorate the pain behavior, while preserving antibody-dependent cellular cytotoxicity (ADCC). In vitro, CDC and ADCC were measured using europium-TDA assay. In vivo, allodynia was evaluated by measuring thresholds to von Frey filaments applied to the hindpaws after injection of either ch14.18 or hu14.18K332 into wild type rats or rats with deficient complement factor 6. Other rats were pretreated with complement factor C5a receptor antagonist and tested following ch14.18 injection. The mutation reduces the antibody’s ability to activate complement, while maintaining its ADCC capabilities. Injection of hu14.18K322 (1 or 3 mg/kg) produced faster resolving allodynia than that engendered by ch14.18 (1 mg/kg). Injection of ch14.18 (1 mg/kg) into rats with C6 complement deficiency further reduced antibody-induced allodynia, while pre-treatment with complement factor C5a receptor antagonist completely abolished ch14.18-induced allodynia. These findings showed that mutant hu14.18 K322 elicited less allodynia than ch14.18 and that ch14.18-elicited allodynia is due to activation of the complement cascade: in part, to formation of membrane attack complex, but more importantly to release of complement factor C5a. Development of immunotherapeutic agents with decreased complement-dependent lysis while maintaining cellular cytotoxicity may offer treatment options with reduced adverse side effects, thereby allowing dose escalation of therapeutic antibodies.
The extent and rapidity with which T cells are regenerated from graft-derived precursor cells directly influences the incidence of infection and the T-cell-based graftversus-tumor effect. Measurement of T-cell receptor excision circles (TRECs) in peripheral blood is a means of quantifying recent thymic T-cell production and has been used after transplantation in many studies to estimate thymus-dependent T-cell reconstitution. We hypothesized that the quality of thymic function before transplantation affects thymusdependent T-cell reconstitution after transplantation. We used real-time polymerase chain reaction (PCR) to quantify signal-joint TRECs (sjTRECs) before and after transplantation. T-cell reconstitution was evaluated by T-cell receptor  (TCR) CDR3 size spectratyping. We tested 77 healthy sibling donors and 244 samples from 26 pediatric recipients of allogeneic hematopoietic stem cell transplantation (AHSCT). Blood from the healthy donors contained 1200 to 155 000 sjTREC copies/mL blood. Patients who had greater than 1200 copies/mL blood before transplantation showed early recovery of sjTREC numbers and TCR repertoire diversity. In contrast, patients who had fewer than 1200 copies/mL blood before transplantation demonstrated significantly slower restoration of thymus-dependent T cells. We conclude that the rate of reconstitution of thymus-dependent T cells is dependent on the competence of thymic function in the recipients before transplantation. Therefore, pretransplantation measurement of sjTREC may provide an important tool for predicting thymus-dependent T-cell reconstitution after transplantation. (Blood. 2005;105:886-893)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.