A thermal model is proposed to analyze the performance of an indirect solar dryer (ISD) with latent heat storage using phase change material (PCM). The estimations are compared with experimental data presented in the scientific literature taken in real conditions. The validated thermal model is used in order to address a comprehensive analysis of the performance of the ISDs under the same operation conditions, the model is able to estimate the temperatures of glass cover, absorber plate, PCM, useful heat, thermal and storage efficiencies, and variables that are difficult to measure experimentally such as liquid fraction, heat losses, and accumulated energy of the ISDs. Three study cases are considered: Case 1 consists of two collectors with and without alternating nocturnal and diurnal operation (benchmarking case). Case 2 and 3 consist in a unique collector operating continuously for 24 h with PCM and without PCM, respectively. It was determined that the use of PCM in ISD increased the night thermal performance and extended the operational time of the system. On the other hand, results indicate that the use of two alternating collectors presents similar discharge behavior to using one collector with PCM operating continuously. Concerning the overall thermal performance, cases 1, 2, and 3 obtained thermal efficiencies of 20%, 28%, and 24%, respectively.
In the present paper, an experimental analysis of a solar water heating collector with an integrated latent heat storage unit is presented. With the purpose to determine the performance of a device on a lab scale, but with commercial features, a flat plate solar collector with phase change material (PCM) containers under the absorber plate was constructed and tested. PCM used was a commercial semi-refined light paraffin with a melting point of 60°C. Tests were carried out in outdoor conditions from October 2016 to March 2017 starting at 7:00 AM until the collector does not transfer heat to the water after sunset. Performance variables as water inlet temperature, outlet temperature, mass flow and solar radiation were measured in order to determine a useful heat and the collector efficiency. Furthermore, operating temperatures of the glass cover, air gap, absorber plate, and PCM containers are presented. Other external variables as ambient temperature, humidity and wind speed were measured with a weather station located next to the collector. The developed prototype reached an average thermal efficiency of 24.11% and a maximum outlet temperature of 50°C. Results indicate that the absorber plate reached the PCM melting point in few cases, this suggests that the use of a PCM with a lower melting point could be a potential strategy to increase thermal storage. A thermal analysis and conclusions of the device performance are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.