AimThe accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset.LocationTropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1MethodsTwo recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons.ResultsThe two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%.Main conclusionsPantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
Bioremediation is an important approach to waste reduction that relies on biological processes to break down a variety of pollutants. This is made possible by the vast metabolic diversity of the microbial world. To explore this diversity for the breakdown of plastic, we screened several dozen endophytic fungi for their ability to degrade the synthetic polymer polyester polyurethane (PUR). Several organisms demonstrated the ability to efficiently degrade PUR in both solid and liquid suspensions. Particularly robust activity was observed among several isolates in the genus Pestalotiopsis, although it was not a universal feature of this genus. Two Pestalotiopsis microspora isolates were uniquely able to grow on PUR as the sole carbon source under both aerobic and anaerobic conditions. Molecular characterization of this activity suggests that a serine hydrolase is responsible for degradation of PUR. The broad distribution of activity observed and the unprecedented case of anaerobic growth using PUR as the sole carbon source suggest that endophytes are a promising source of biodiversity from which to screen for metabolic properties useful for bioremediation.Tremendous increases in the manufacture and consumption of plastics over recent decades have led to numerous ecological and economic concerns. The persistence of synthetic polymers introduced into the environment by human industry poses a major threat to natural ecological systems. The low cost and ease of manufacture have increased global plastic demand more than 150-fold, with the production of 1.5 million tons in 1950 and 245 million tons as of 2006 (21). Despite recognition of the persistent pollution problems posed by plastic, global production is still increasing, with the largest increases expected in developing nations. The sheer volume of plastics produced each year presents a problem for waste disposal systems. The scale of this problem and the recalcitrance of some polymers to degradation necessitate investigation into effective methods for biodegradation of plastics. By gaining an understanding of the mechanisms of polymer degradation, a more efficient technique for the biodegradation of plastic waste can be achieved. To accomplish this goal, researchers need greater knowledge of how compounds are metabolized by existing organisms, an investigation of new organisms with bioremediation potential, and the characterization of novel metabolic capabilities.
Aim Relationships between range size and species richness are contentious, yet they are key to testing the various hypotheses that attempt to explain latitudinal diversity gradients. Our goal is to utilize the largest data set yet compiled for New World woody plant biogeography to describe and assess these relationships between species richness and range size. Location North and South America.Methods We estimated the latitudinal extent of 12,980 species of woody plants (trees, shrubs, lianas). From these estimates we quantified latitudinal patterns of species richness and range size. We compared our observations with expectations derived from two null models. ResultsPeak richness and the smallest-and largest-ranged species are generally found close to the equator. In contrast to prominent diversity hypotheses: (1) mean latitudinal extent of tropical species is greater than expected; (2) latitudinal extent appears to be decoupled from species richness across New World latitudes, with abrupt transitions across subtropical latitudes; and (3) mean latitudinal extents show equatorial and north temperate peaks and subtropical minima. Our results suggest that patterns of range size and richness appear to be influenced by three broadly overlapping biotic domains (biotic provinces) for New World woody plants. Main conclusionsHypotheses that assume a direct relationship between range size and species richness may explain richness patterns within these domains, but cannot explain gradients in richness across the New World.
We identified species-and community-level dietary characteristics for a species-rich Amazonian parrot assemblage to determine relationships among dietary metrics and use of geophagy sites. Previous studies suggest that soil is consumed at geophagy sites in this region mainly to supplement dietary sodium. We accumulated 1400 feeding records for 16 parrot species over 2 yr and found that seeds, flowers, and fruit pulp featured prominently in diets, while bark, insects, and lichen were consumed in small quantities. Food availability across 1819 trees was measured, and we found that flower availability was highest in the dry season and fruit production peaked in the wet season, but that phenology patterns of the 20 most commonly foraged plant species suggest no serious food bottlenecks. Partitioning of available food resources among the 13 most commonly encountered parrots is suggested by an ordination analysis (DCA), which placed the large macaws (Ara) with the Amazona parrots at the 'primary forest' end of a dietary resource axis and four smaller species at the 'successional forest' end of the axis. Parrot species associated with successional forest also consumed less plant species overall. Furthermore, these parrot species consuming successional forest resources had higher claylick visitation rates than those consuming primary forest resources suggesting they derive the greatest benefits from soil consumption.Abstract in Spanish is available in the online version of this article.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.