Understanding spatial variation in biodiversity along environmental gradients is a central theme in ecology. Differences in species compositional turnover among sites (β diversity) occurring along gradients are often used to infer variation in the processes structuring communities. Here, we show that sampling alone predicts changes in β diversity caused simply by changes in the sizes of species pools. For example, forest inventories sampled along latitudinal and elevational gradients show the well-documented pattern that β diversity is higher in the tropics and at low elevations. However, after correcting for variation in pooled species richness (γ diversity), these differences in β diversity disappear. Therefore, there is no need to invoke differences in the mechanisms of community assembly in temperate versus tropical systems to explain these global-scale patterns of β diversity.
The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha (within local assemblages), beta (among assemblages), and gamma (regional pool) scales. We test these predictions by quantifying hypervolumes constructed from functional traits representing major axes of plant strategy variation (specific leaf area, plant height, and seed mass) in tree assemblages spanning the temperate and tropical New World. Alpha-scale trait volume decreases with absolute latitude and is often lower than sampling expectation, consistent with environmental filtering theory. Beta-scale overlap decays with geographic distance fastest in the temperate zone, again consistent with environmental filtering theory. In contrast, gamma-scale trait space shows a hump-shaped relationship with absolute latitude, consistent with no theory. Furthermore, the overall temperate trait hypervolume was larger than the overall tropical hypervolume, indicating that the temperate zone permits a wider range of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory. S pecies richness increases toward the equator (1, 2) in major clades of both extant and extinct species of plants and animals (3, 4). The generality of the pattern hints at a correspondingly general explanation, yet the latitudinal gradient in species richness remains one of ecology's greatest unsolved puzzles. Long-running debates over the causes of the latitudinal gradient of species richness have focused on ecological, evolutionary, and geographic explanations (5-10). Although there has been some progress (11), it is also increasingly clear that there are numerous obstacles to understanding the primary drivers of the latitudinal gradient, including an ever-increasing number of hypotheses (12, 13), challenges in clearly separating their interdependencies (14, 15), and difficulties in rigorously falsifying their assumptions and predictions (16).More powerful tests of biodiversity theories need to move beyond species richness and instead explicitly focus on the mechanisms generating the gradient, by recasting the theories in terms of other measures of diversity, such as functional diversity (17-19). For example, explanations that assume species richness is limited by resource availability have often focused on the strength of species interactions, life history differences, and environmental constraints on how species pack into niche space (20). Evolutionary hypotheses have focused on differences in diversification rates, as well as the influence of species interactions on diversification rates (9). These interaction-based explanations implicitly refer to the degree of ecol...
BackgroundThe digitization of biodiversity data is leading to the widespread application of taxon names that are superfluous, ambiguous or incorrect, resulting in mismatched records and inflated species numbers. The ultimate consequences of misspelled names and bad taxonomy are erroneous scientific conclusions and faulty policy decisions. The lack of tools for correcting this ‘names problem’ has become a fundamental obstacle to integrating disparate data sources and advancing the progress of biodiversity science.ResultsThe TNRS, or Taxonomic Name Resolution Service, is an online application for automated and user-supervised standardization of plant scientific names. The TNRS builds upon and extends existing open-source applications for name parsing and fuzzy matching. Names are standardized against multiple reference taxonomies, including the Missouri Botanical Garden's Tropicos database. Capable of processing thousands of names in a single operation, the TNRS parses and corrects misspelled names and authorities, standardizes variant spellings, and converts nomenclatural synonyms to accepted names. Family names can be included to increase match accuracy and resolve many types of homonyms. Partial matching of higher taxa combined with extraction of annotations, accession numbers and morphospecies allows the TNRS to standardize taxonomy across a broad range of active and legacy datasets.ConclusionsWe show how the TNRS can resolve many forms of taxonomic semantic heterogeneity, correct spelling errors and eliminate spurious names. As a result, the TNRS can aid the integration of disparate biological datasets. Although the TNRS was developed to aid in standardizing plant names, its underlying algorithms and design can be extended to all organisms and nomenclatural codes. The TNRS is accessible via a web interface at http://tnrs.iplantcollaborative.org/ and as a RESTful web service and application programming interface. Source code is available at https://github.com/iPlantCollaborativeOpenSource/TNRS/.
AimIn recent years evidence has accumulated that plant species are differentially sorted from regional assemblages into local assemblages along local-scale environmental gradients on the basis of their function and abiotic filtering. The favourability hypothesis in biogeography proposes that in climatically difficult regions abiotic filtering should produce a regional assemblage that is less functionally diverse than that expected given the species richness and the global pool of traits. Thus it seems likely that differential filtering of plant traits along local-scale gradients may scale up to explain the distribution, diversity and filtering of plant traits in regional-scale assemblages across continents. The present work aims to address this prediction.Location North and South America. MethodsWe combine a dataset comprising over 5.5 million georeferenced plant occurrence records with several large plant functional trait databases in order to: (1) quantify how several critical traits associated with plant performance and ecology vary across environmental gradients; and (2) provide the first test of whether the woody plants found within 1°and 5°map grid cells are more or less functionally diverse than expected, given their species richness, across broad gradients. ResultsThe results show that, for many of the traits studied, the overall distribution of functional traits in tropical regions often exceeds the expectations of random sampling given the species richness. Conversely, temperate regions often had narrower functional trait distributions than their smaller species pools would suggest. Main conclusionThe results show that the overall distribution of function does increase towards the equator, but the functional diversity within regional-scale tropical assemblages is higher than that expected given their species richness. These results are consistent with the hypothesis that abiotic filtering constrains the overall distribution of function in temperate assemblages, but tropical assemblages are not as tightly constrained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.