Mutations in the coding region of the WFS1 gene cause Wolfram syndrome, a rare multisystem neurodegenerative disorder of autosomal recessive inheritance. Patients with Wolfram syndrome display considerable clinical pleiomorphism, and symptoms such as neurological complications and psychiatric disorders are common. In the present study we have characterized Wfs1 expression pattern in the mouse central nervous system by using a combination of immunohistochemistry on wild-type mice and X-Gal staining of Wfs1 knockout mice with targeted insertion of the lacZ reporter. We identified a robust enrichment of Wfs1 protein in the central extended amygdala and ventral striatum. Prominent Wfs1 expression was seen in the hippocampal CA1 region, parasubiculum, superficial part of the second and third layers of the prefrontal cortex and proisocortical areas, hypothalamic magnocellular neurosecretory system, and central auditory pathway. Wfs1 expression was also detected in numerous brainstem nuclei and in laminae VIII and IX of the spinal cord. Wfs1-positive nerve fibers were found in the medial forebrain bundle, reticular part of the substantia nigra, globus pallidus, posterior caudate putamen, lateral lemniscus, alveus, fimbria, dorsal hippocampal commissure, subiculum, and to a lesser extent in the central sublenticular extended amygdala, compact part of substantia nigra, and ventral tegmental area. The neuroanatomical findings suggest that the lack of Wfs1 protein function can be related to several neurological and psychiatric symptoms found in Wolfram syndrome. Enrichment of Wfs1 protein in the central extended amygdala suggests a role in the modulation of anxiety and fear.
Wolfram syndrome (WS) is a rare autosomal-recessive disorder that is caused by mutations in the WFS1 gene and is characterized by juvenile-onset diabetes, optic atrophy, hearing loss and a number of other complications. Here, we describe the creation and phenotype of Wfs1 mutant rats, in which exon 5 of the Wfs1 gene is deleted, resulting in a loss of 27 amino acids from the WFS1 protein sequence. These Wfs1-ex5-KO232 rats show progressive glucose intolerance, which culminates in the development of diabetes mellitus, glycosuria, hyperglycaemia and severe body weight loss by 12 months of age. Beta cell mass is reduced in older mutant rats, which is accompanied by decreased glucose-stimulated insulin secretion from 3 months of age. Medullary volume is decreased in older Wfs1-ex5-KO232 rats, with the largest decreases at the level of the inferior olive. Finally, older Wfs1-ex5-KO232 rats show retinal gliosis and optic nerve atrophy at 15 months of age. Electron microscopy revealed axonal degeneration and disorganization of the myelin in the optic nerves of older Wfs1-ex5-KO232 rats. The phenotype of Wfs1-ex5-KO232 rats indicates that they have the core symptoms of WS. Therefore, we present a novel rat model of WS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.