Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in EconStor may
Massimo GenoeseThe Merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany
AbstractThe German feed-in support of electricity generation from renewable energy sources has led to high growth rates of the supported technologies. Critics state that the costs for consumers are too high. An important aspect to be considered in the discussion is the price effect created by renewable electricity generation. This paper seeks to analyse the impact of privileged renewable electricity generation on the electricity market in Germany. The central aspect to be analysed is the impact of renewable electricity generation on spot market prices. The results generated by an agent-based simulation platform indicate that the financial volume of the price reduction is considerable. In the short run, this gives rise to a distributional effect which creates savings for the demand side by reducing generator profits. In the case of the year 2006, the volume of the merit-order effect exceeds the volume of the net support payments for renewable electricity generation which have to be paid by consumers.
We analyze prediction schemes for stochastic time series data. We propose that under certain conditions, a scalar time series, obtained from a vector-valued Markov process can be modeled as a finite memory Markov process in the observable. The transition rules of the process are easily computed using simple nonlinear time series predictors originally proposed for deterministic chaotic signals. The optimal time lag entering the embedding procedure is shown to be significantly smaller than the deterministic case. The concept is illustrated for simulated data and for surface wind velocity data, for which the deterministic part of the dynamics is shown to be nonlinear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.